
Discrete optimization methods to fit piecewise-affine models to data points

E. Amaldia, S. Conigliob,1, L. Taccaria

aDipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milano, Italy
b Lehrstuhl II für Mathematik

RWTH Aachen University
Pontdriesch 14-16, 52062 Aachen, Germany

Abstract

Fitting piecewise affine models to data points is a pervasive task in many scientific disciplines. In this work,
we address the k-Piecewise Affine Model Fitting with Piecewise Linear Separability problem (k-PAMF-PLS)
where, given a set of m points {a1, . . . ,am} ⊂ Rn and the corresponding observations {b1, . . . , bm} ⊂ R, we
have to partition the domain Rn into k piecewise linearly separable subdomains and to determine an affine
submodel (function) for each of them so as to minimize the total linear fitting error w.r.t. the observations
bi.

To solve k-PAMF-PLS to optimality, we propose a mixed-integer linear programming (MILP) formulation
where symmetries are broken by separating the so-called shifted column inequalities. For medium-to-large
scale instances, we develop a four-step heuristic involving, among others, a point reassignment step based on
the identification of critical points and a domain partition step based on multicategory linear classification.
Differently from traditional approaches proposed in the literature for similar fitting problems, in our methods
the domain partitioning and submodel fitting aspects are taken into account simultaneously.

Computational experiments on real-world and structured randomly generated instances show that, with
our MILP formulation with symmetry breaking constraints, we can solve to proven optimality many small-
size instances. Our four-step heuristic turns out to provide close-to-optimal solutions for small-size instances,
while allowing to tackle instances of much larger size. The experiments also show that the combined impact
of the main features of our heuristic is quite substantial when compared to standard variants not including
them.

1. Introduction

Fitting a set of data points in Rn with a combination of low complexity models is a pervasive problem in,
essentially, any area of science and engineering. It naturally arises, for instance, in prediction and forecasting
when determining a model to approximate the value of an unknown function, or whenever one wishes to
approximate a highly complex nonlinear function with a simpler one. Applications range from optimization
(see, e.g., [TV12] and the references therein) to statistics (see, e.g., the recent work in [?]), data
mining (see, e.g., [AM02, BS07]), and system identification (see, for instance, [FTMLM03? , TPSM06]),
only to cite a few.

Among the different options, piecewise affine models have a number of advantages with respect to other
model fitting approaches. Indeed, they are compact and simple to evaluate, visualize, and interpret, in con-

Email addresses: edoardo.amaldi@polimi.it (E. Amaldi), coniglio@math2.rwth-aachen.de (S. Coniglio),
leonardo.taccari@polimi.it (L. Taccari)

1The work of S. Coniglio was carried out, for a large part, while he was with Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano. The part carried out while with Lehrstuhl II für Mathematik, RWTH Aachen University,
is supported by the German Federal Ministry of Education and Research (BMBF), grant 05M13PAA, and Federal Ministry for
Economic Affairs and Energy (BMWi), grant 03ET7528B.

Preprint submitted to Elsevier October 29, 2015

bi

aiD1
D2

bi

ai

(a) (b)

Figure 1: (a) A piecewise affine model with k = 2, fitting the eight data points A = {ai}i∈I and their observations {bi}i∈I
with two submodels (in dark grey). The points (ai, bi) assigned to each submodel are indicated by � and N. The model adopts
a linearly separable partition of the domain R2 (represented in light grey). (b) An infeasible solution obtained by solving a
k-hyperplane clustering problem in R3 with k = 2. Although yielding a smaller fitting error than that in (a), this solution
induces a partition A1, A2 of A where the points ai assigned to the first submodel (indicated by �) cannot be linearly separated
from those assigned to the second submodel (indicated by M). In other words, the solution does not allow for a domain partition
D1, D2 of R2 with linearly separable subdomains that is consistent with the point partition A1, A2.

trast to models obtained with other techniques such as, e.g., neural networks, while allowing to approximate
even highly nonlinear functions.

Given a set of m points A = {a1, . . . ,am} ⊂ Rn, where I = {1, . . . ,m}, with the corresponding obser-
vations {b1, . . . , bm} ⊂ R and a positive integer k, the general problem of fitting a piecewise affine model to
the data points {(a1, b1), . . . , (am, bm)} consists in partitioning the sub-domain Rn into k continuous subdo-
mains D1, . . . , Dk, where J = {1, . . . , k}, and in determining, for each subdomain Dj , an affine submodel (an
affine function) fj : Dj → R, so as to minimize a measure of the total fitting error. Adopting the notation

fj(x) = wjx−wj
0 with coefficients (wj , wj

0) ∈ Rn+1, the j-th affine submodel corresponds to the hyperplane

Hj = {(x, fj(x)) ∈ Rn+1 : fj(x) = wjx− wj
0} where x ∈ Dj . The total fitting error is defined as the sum,

over all i ∈ I, of a function of the difference between bi and the value fj(i)(ai) provided by the piecewise
affine model, where j(i) is the index of the affine submodel corresponding to the subdomain Dj(i) which
contains the point ai.

In the literature, different error functions (e.g., linear or quadratic) as well as different types of domain
partition (with linearly or nonlinearly separable subdomains) have been considered. See Figure 1 (a) for an
illustration of the case with k = 2 and a domain partition with linearly separable subdomains.

In this work, the focus is on the version of the general piecewise affine model fitting problem with a linear
error function (L1 norm) and a domain partition with pairwise linearly separable subdomains. We refer to
it as to the k-Piecewise Affine Model Fitting with Piecewise Linear Separability problem (k-PAMF-PLS). A
more formal definition of the problem will be provided in Section 3.

k-PAMF-PLS shares a connection with the so-called k-Hyperplane Clustering problem (k-HC), an exten-
sion of a classical clustering problem which calls for k hyperplanes in Rn+1 that minimize the sum, over
all the data points {(a1, b1), . . . , (am, bm)}, of the `2 distance from (ai, bi) to the hyperplane it is assigned
to. See [BM00, AC13, Con11?] for some recent work on the problem and [?] for the problem variant
where we minimize the number of hyperplanes needed to fit the points within a prescribed tolerance ε. It is
nevertheless crucial to note that, differently from many of the approaches in the literature (which we briefly
summarize in Section 2) and depending on the type of the domain partition that is adopted, a piecewise
affine function cannot be determined by just solving an instance of k-HC. As illustrated in Figure 1 (b), the
two aspects of k-PAMF-PLS, namely, submodel fitting and domain partitioning, should be taken into account
at once to obtain a solution where the submodels and the domain partition are consistent. In this work, we

2

propose exact and heuristic algorithms for k-PAMF-PLS which simultaneously consider both aspects.
The paper is organized as follows. After summarizing previous and related work in Section 2, we for-

mally define the problem under consideration in Section 3. In Section 4, we provide a mixed-integer linear
programming (MILP) formulation for k-PAMF-PLS. We then strengthen the formulation, when solving the
problem in a branch-and-cut setting, by generating symmetry-breaking constraints. In Section 5, we propose
a four-step heuristic to tackle larger-size instances. Computational results are reported and discussed in Sec-
tion 6. In Section 7, we consider the application of k-PAMF to the area of (dynamic) system
identification, with focus on the identification of so-called hybrid systems. Section 8 contains
some concluding remarks. Portions of this work appeared, in a preliminary stage, in [ACT11, ACT12].

2. Previous and related work

In the literature, many variants of the general problem of fitting a piecewise affine model to data points
have been considered. We briefly mention some of the most relevant ones in this section.

In some works, the domain is partitioned a priori, exploiting the domain-specific information about the
dataset at hand. This approach has a typically limited applicability, as it requires knowledge of the underlying
structure of the data, which may often not be available. For some examples, the reader is referred to [TV12]
(which admits the use of a predetermined domain partition as a special case of a more general approach)
and to the references therein.

In other works, a domain partition is easily derived when the attention is restricted to convex or concave
piecewise affine models. Indeed, if the model is convex, each subdomain Dj is uniquely defined as Dj = {x ∈
Rn : fj(x) ≥ fj′(x) ∀j′ ∈ J} (similarly, for concave models, with ≤ instead of ≥). This is, for instance, the
case of [MB09] and [MRT05], where the fitting function is the pointwise maximum (or minimum) of a set of
k affine functions. A similar case is that of [RBL04], where the authors address the identification
of hinging hyperplane model, a subclass of piecewise affine models where the subdomains are
implicitly defined (see also Section 7).

In the general version of the problem (that we address in this paper), a partition of the domain has to
be explicitly derived together with the fitting submodels in order to obtain a piecewise affine function from
Rn to R. To the best of our knowledge, the available methods split the problem into two subproblems that
are solved sequentially: i) a clustering problem aiming at partitioning the data points and simultaneously
fitting each subset with an affine submodel, and ii) a classification problem asking for a domain partition
consistent with the previously determined submodels and the corresponding point partition. Note that
the clustering problem considers the data points {(a1, b1), . . . , (am, bm)} ⊂ Rn+1, whereas the classification
problem considers the original points {a1, . . . ,am} ⊂ Rn but not the observations bi. The clustering phase
is typically carried out by either choosing a given number k of hyperplanes which minimize the fitting error,
or by finding a minimum number of hyperplanes yielding a fitting error of, at most, a given ε. We remark
that these two-phase approaches, due to deferring the domain partition to the end of the method, may lead
to poor quality solutions.

Such an approach is adopted, for instance, in [?]. In the clustering phase, as proposed in [AM02],
the problem of fitting the data points in Rn+1 with a minimum number of linear submodels within a given
error tolerance ε > 0 is formulated and solved as a Min-PFS problem, which amounts to partitioning a given
infeasible linear system into a minimum number of feasible subsystems. Then, in the classification phase, the
domain is partitioned via a Support Vector Machine (SVM). In [TPSM06], the authors solve a k-hyperplane
clustering problem via the heuristic proposed in [BM00] for the clustering phase, resorting to SVM for the
classification phase. The authors of [FTMLM03] adopt a variant of k-means2 [Mac67] for the clustering
phase, but fit each affine submodel a posteriori by solving a linear regression problem where the weighted
least square error is minimized and, then, partition the domain via SVM. A similar approach is also adopted
in [BS07], where, in the first phase, a k-hyperplane clustering problem is solved as a mixed-integer linear

2k-means is a well-known heuristic to partition m points {a1, . . . ,am} into k groups (clusters) so as to minimize the total
distance between each point and the centroid (mean) of the corresponding group.

3

program and, in the second phase, the domain partition is derived via Multicategory Linear Classification
(MLC). For references to SVM and MLC, see [Vap96] and [BM94], respectively.

As already mentioned in the previous section, this kind of approaches may produce, in the first phase,
affine submodels inducing a partition A1, . . . , Ak of the points of A which does not allow for a consistent
domain partition D1, . . . , Dk, i.e., for a partition where all the points ai in a subset Aj are contained into
one and only one subdomain Dj(i). Refer again to Figure 1 (b) for an illustration.

From an application point of view, a large body of work has been carried out in the context
of (dynamic) system identification for the special case of so-called hybrid systems. In this
regard, many approaches typically encompass two-phase heuristic methods, such as those in [?
TPSM06, FTMLM03] which we have already mentioned, to identify piecewise-affine models
of the type that we consider in this paper. Among other widely employed piecewise-affine
models which share a similar structure with those that we focus on, we mention the case of
so-called hinging hyperplanes, see the survey?? [RBL04] for a reference, which are often???
tackled via mixed-integer programming techniques. For more details, we refer the reader to
Section 7. A more recent line of research is that pursued in, among others, [? ?], where the
authors consider tractable convex relaxations of sparse optimization problems aiming at the
identification of models with as few switches (nonlinearities) as possible. For further references
on the subject, we refer the reader to the surveys [? ?].

3. Problem definition

In this work, we require that the domain partition D1, . . . , Dk of Rn, which has to be determined
jointly with the fitting hyperplanes, satisfy the property of piecewise linear separability, which is the
basis of the so-called multicategory linear classification problem.

The concept of piecewise linear separability forms the basis of what is usually known as
multiway linear classification, a classical data mining classification paradigm which has been
largely studied in the last two decades. For a reference, we refer the reader to [BM94]. In the
following subsection, we briefly recall some key elements of this technique which we will then
leverage in the remainder of the paper.

3.1. Piecewise linear separability and multicategory linear classification

Given k groups of points A1, . . . , Ak ⊂ Rn, the multicategory linear classification problem calls for a
partition of the domain Rn into k subdomains D1, . . . , Dk where: i) for every j ∈ J , each group Aj is
completely contained into the subdomain Dj , and ii) for any pair of indices j1, j2 ∈ J with j1 6= j2, the
subdomains Dj1 and Dj2 of Rn can be linearly separated by a hyperplane.

As shown in [DF66], such a partition can be conveniently defined by introducing, for each group of
points Aj with j ∈ J , a vector of parameters (yj , yj0) ∈ Rn+1 such that a point ai ∈ Aj belongs to the

subdomain Dj if and only if, for every j′ 6= j, we have (yj − yj′)ai− (yj0 − y
j′

0) > 0. Note that, this way, for
any pair of indices j1, j2 ∈ J with j1 6= j2, the sets of points Aj1 and Aj2 are separated by the hyperplane

Hj1j2 = {x ∈ Rn : (yj1 −yj2)x = yj10 −y
j2
0 } with coefficients (yj1 −yj2 , yj10 −y

j2
0) ∈ Rn+1. See Figure 2 (a)

for an illustration. It follows that, for any j ∈ J , the domain Dj is defined as:

Dj =
{
x ∈ Rn : (yj − yj′)x− (yj0 − y

j′

0) > 0 ∀j′ ∈ J \ {j′}
}
. (1)

If the group of points A1, . . . , Ak are not linearly separable, for any choice of the vectors of parameters
(yj , yj0) with j ∈ J , there exists at least a pair j1, j2 for which the inequality (yj1 − yj2)ai − (yj10 − y

j2
0) > 0

is violated. In this case, the typical approach is to look for a solution which minimizes the sum, over all the
data points, of the so-called misclassification error. For a point ai ∈ Aj(i), where j(i) is the index of the
group it belongs to, the latter is defined as:

max

{
0, max

j∈J\{j(i)}

{
−(yj(i) − yj)ai + (y

j(i)
0 − yj0)

}}
, (2)

4

D1 D2

D3

D4 D5

D1

D2

(a) (b)

Figure 2: (a) Piecewise linear separation of five linearly separable groups of points. (b) Classification with minimum misclassi-
fication error of two linearly inseparable groups of points (note the misclassified black point).

thus corresponding to the largest violation among the inequalities (yj(i) − yj)ai − (y
j(i)
0 − yj0) > 0. For an

illustration, see Figure 2 (b).

Since the set of vectors (yj , yj0), for j ∈ J , satisfying constraint (yj(i) − yj)ai − (y
j(i)
0 − yj0) > 0 is an

open subset of Rn+1, it is common practice to replace it by the inhomogeneous constraint (yj(i) − yj)ai −
(y

j(i)
0 − yj0) ≥ 1, which induces a closed feasible set. This can be done without loss of generality if we

assume that the norm of the vectors (yj(i), y
j(i)
0), (yj , yj0) can be arbitrarily large, for all j ∈ J . Indeed, if

(yj(i)−yj)ai− (y
j(i)
0 − yj0) > 0 but (yj(i)−yj)ai− (y

j(i)
0 − yj0) < 1 for some ai ∈ A, then a feasible solution

which satisfies the inhomogeneous constraint can be obtained by just scaling (yj(i), y
j(i)
0) and (yj , yj0) by a

constant λ ≥ 1

(yj(i)−yj)ai−(yj(i)
0 −yj

0)
. In the inhomogeneous version, the misclassification error becomes:

max

{
0, max

j∈J\{j(i)}

{
1− (yj(i) − yj)ai + (y

j(i)
0 − yj0)

}}
. (3)

3.2. k-Piecewise affine model fitting problem with piecewise linear separability

We can now provide a formal definition of k-Piecewise Affine Model Fitting with Piecewise Linear Sepa-
rability.

k-PAMF-PLS: Given a set of m points A = {a1, . . . ,am} ⊂ Rn with the corresponding observa-
tions {b1, . . . , bm} ⊂ R and a positive integer k:

i) partition A into k subsets A1, . . . , Ak which are pairwise linearly separable via a domain
partition D1, . . . , Dk of Rn induced, according to Equation (1), by a set of vectors (yj , yj0) ∈
Rn+1, for j ∈ J ,

ii) determine, for each subdomain Dj , an affine function fj : Dj → R where fj(x) = wjx−wj
0

with parameters (wj , wj
0) ∈ Rn+1,

so as to minimize the linear error function
∑m

i=1 |bi − (wj(i)ai − wj(i)
0)|, where j(i) ∈ J is the

index for which ai ∈ Aj(i) ⊂ Dj(i).

4. Strengthened mixed-integer linear programming formulation

In this section, we propose an MILP formulation to solve k-PAMF-PLS to optimality via branch-and-cut,
as implemented in state-of-the-art MILP solvers. To enhance the efficiency of the solution algorithm, we
break the symmetries that naturally arise in the formulation by generating symmetry-breaking constraints.

Our MILP formulation is derived by combining a hyperplane clustering formulation (to partition the data
points into k subsets A1, . . . , Ak and to determine an affine submodel for each of them) with multicategory

5

linear classification constraints (to guarantee a piecewise linearly separable domain partition D1, . . . Dk,
consistent with the k subsets A1, . . . , Ak). It is important to stress that this formulation determines
jointly the parameters of the fitting affine submodels and the piecewise affine domain partition.

4.1. MILP formulation

For each i ∈ I and j ∈ J , we introduce a binary variable xij which takes value 1 if the point ai is contained

in the subset Aj and 0 otherwise. Let zi be the fitting error of point ai ∈ A for each i ∈ I, (wj , wj
0) ∈ Rn+1

the parameters of the submodel of index j ∈ J , and (yj , yj0) ∈ Rn+1, with j ∈ J , the parameters used to
enforce pairwise linear separability. Let also M1 and M2 be large enough constants (whose value is discussed
below). The formulation is as follows:

min

m∑
i=1

zi (4)

s.t.

k∑
j=1

xij = 1 ∀i ∈ I (5)

zi ≥ bi −wjai + wj
0 −M1(1− xij) ∀i ∈ I, j ∈ J (6)

zi ≥ −bi +wjai − wj
0 −M1(1− xij) ∀i ∈ I, j ∈ J (7)

(yj1 − yj2)ai − (yj1
0 − yj2

0) ≥ 1−M2(1− xij1) ∀i ∈ I, j1, j2 ∈ J : j1 6= j2 (8)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J (9)

zi ≥ 0 ∀i ∈ I (10)

(wj , wj
0) ∈ Rn+1 ∀j ∈ J (11)

(yj , yj
0) ∈ Rn+1 ∀j ∈ J. (12)

Constraints (5) guarantee that each point ai ∈ A be assigned to exactly one submodel. Constraints (6)

and (7) impose that zi = |bi − wj(i)ai + w
j(i)
0 |. Indeed, together they imply that zi ≥ |bi − wjai + wj

0| −
M1(1 − xij). When xij = 1, this amounts to imposing zi ≥ |bi − wjai + wj

0| (which will be tight in any
optimal solution due to the objective function direction), while being redundant (since zi ≥ 0) when xij = 0
and M1 is large enough. For each j1 ∈ J , Constraints (8) impose that all the points assigned to the subset
Aj1 (for which the term −M2(1 − xij) vanishes) belong to the intersection of all the halfspaces defined by

(yj1 − yj2)ai − (yj10 − y
j2
0) ≥ 1, whereas they are deactivated when xij1 = 0 and M2 is sufficiently large.

This way, we impose a zero misclassification error for each data point, thus guaranteeing pairwise linear
separability among the points assigned to the different submodels. Note that, if Constraints (8) are dropped,
we obtain a relaxation corresponding to a k-hyperplane clustering problem where the objective function is
measured according to (4), (6) and (7).

It is important to observe that, in principle, there exists no (large enough) finite value for the parameter
M1 in Constraints (6) and (7). As an example, the fitting error between a point (a, b) = (e,−1) ∈ Rn+1,
where e is the all-one vector, and the affine function f = wa− 1 is equal to ‖w‖1 (the `1 norm of w) and,
thus, it is unbounded and arbitrarily large for an arbitrary large ‖w‖1. Let j(i) ∈ J such that xij(i) = 1.
The introduction of a finite M1 corresponds to letting:

zi = max

j=j(i) and xij(i)=1︷ ︸︸ ︷
|bi −wj(i)ai + w

j(i)
0 |,

j 6=j(i) and xij=0︷ ︸︸ ︷
max

j∈J\{j(i)}
{|bi −wjai + wj

0| −M1}

 , (13)

rather than zi = |bi−wj(i)ai+w
j(i)
0 |. Therefore, a finite M1 introduces a penalization term into the objective

function, equal to:

m∑
i=1

max

{
0, max

j∈J\{j(i)}
{|bi −wjai + wj

0| −M1} − |bi −wj(i)ai + w
j(i)
0 |

}
. (14)

6

The effect is of penalizing solutions where the fitting error between any point and any submodel is too large,
regardless of the submodels to which each point is assigned.

We face a similar issue for Constraints (8) due to the presence of the parameter M2. Indeed, for any
finite M2 and for xij1 = 0, the constraint implies (yj1−yj2)ai−(yj10 −y

j2
0) ≥ 1−M2. Hence, Constraints (8)

impose that the “linear distance”3 between each point ai and the hyperplane separating any pair of subdo-
mains Dj1 , Dj2 be smaller than M2 − 1 even if ai is not contained in either of the subdomains, i.e., even if
ai /∈ Aj1 and ai /∈ Aj2 .

In spite of the lack of theoretically finite values for M1 and M2, setting them to a value a few orders of
magnitude larger than the size of the box encapsulating the data points in Rn+1 typically suffices to produce
good quality (if not optimal) solutions. We will mention an occurrence where this is not the case in Section 6.

4.2. Symmetries

Let X ∈ {0, 1}m×k be the binary matrix with entries {X}ij = xij for i ∈ I and j ∈ J . We observe that
Formulation (4)–(12) admits symmetric solutions as a consequence of the existence of a symmetry group
acting on the columns of X. This is because, for any X representing a feasible solution, an equivalent
solution can be obtained by permuting the columns of X, an operation which corresponds to permuting the
labels 1, . . . , k by which the submodels and subdomains are indexed.

From a computational point of view, the solvability of our MILP formulation for k-PAMF-PLS is hindered
by the existence of symmetries. On the one hand, this is because, when adopting methods based on branch-
and-bound, symmetries typically lead to an unnecessarily large search tree where equivalent (symmetric)
solutions are discovered again and again at different nodes. On the other hand, the presence of symmetries
usually leads to weaker Linear Programming (LP) relaxations, for which the barycenter of each set of
symmetric solutions, which often yields very poor LP bounds, is always feasible [?]. This is the case of
our formulation where, for a sufficiently large M = M1 = M2 ≥ k

k−1 max{1, |b1|, |b2|, . . . , |bm|}, the LP

relaxation of Formulation (4)–(12) admits a solution of value 0. To see this, let xij = 1
k for all i ∈ I, j ∈ J .

Constraints (5) are clearly satisfied. Let then zi = 0 for all i ∈ I, (wj , wj
0) = (0, 0) and (yj , yj0) = (0, 0)

for all j ∈ J . Constraints (6), (7), and (8) are then satisfied whenever we have, respectively, M1
k−1
k ≥ bi,

M1
k−1
k ≥ −bi, and M2

k−1
k ≥ 1.

A way to deal with this issue is to partition the set of feasible solutions into equivalence classes (or orbits)
under the symmetry group, selecting a single representative per class. Different options are possible. We
refer the reader to [Mar10] for an extensive survey on symmetry in mathematical programming. A possibility,
originally introduced in [MDZ01, MDZ06], is of selecting as a representative the (unique) feasible solution
of each orbit where the columns of X are lexicographically sorted in non-increasing order. According to [?
], we call the convex hull of such lexicographically sorted matrices X ∈ {0, 1}n×k orbitope.

4.3. Symmetry breaking constraints from the partitioning orbitope

Since, in our case, X is a partitioning matrix (a matrix X ∈ {0, 1}n×k with exactly a 1 per row), we are
interested in the so-called partitioning orbitope, whose complete linear description is given in [?].

Neglecting the trivial constraints, the partitioning orbitope is defined by the set of so-called Shifted
Column Inequalities (SCIs). Call B(i,j) a bar, defined as B(i,j) = {(i, j), (i, j + 1), . . . , (i,min{i, k})}, and
col(i,j) a column, defined as col(i,j) = {(j, j), (j + 1, j), ..., (i, j)}. A shifted column S(i,j) is a subset of the
indices of X obtained by shifting some of the indices in col(i,j) diagonally towards the upper-left portion
of X. For an illustration, see Figure 3. For two subsets of indices B(i,j), S(i−1,j−1) ⊂ I × J thus defined, an
SCI reads: ∑

(i′,j′)∈B(i,j)

xi′j′ −
∑

(i′,j′)∈S(i−1,j−1)

xi′j′ ≤ 0.

3Given a point a and a hyperplane of equation wx − w0 = 0, the distance from a to the closest point belonging to the

hyperplane amounts to
|wa−w0|
‖w‖2

. Then, the “linear distance” mentioned in the text corresponds to the point-to-hyperplane

distance multiplied by ‖w‖2.

7

i

j

η

i

j

i

j

(a) (b) (c)

Figure 3: (a) The bar B(i,j) (in black and dark gray) and the column col(i−1,j−1) (in light gray). (b) and (c) Two shifted
columns (in light gray) obtained by shifting col(i−1,j−1). Note how the shifting operation introduces empty rows.

As shown in [?], the linear description of the partitioning orbitope is:

k∑
j=1

xij = 1 ∀i ∈ I (15)

∑
(i′,j′)∈B(i,j)

xi′j′ −
∑

(i′,j′)∈S(i−1,j−1)

xi′j′ ≤ 0 ∀B(i,j), S(i−1,j−1) : i, j ∈ J, i, j ≥ 2 (16)

xij = 0 ∀i ∈ I, j ∈ J : j ≥ i+ 1 (17)

xij ≥ 0 ∀i ∈ I, j ∈ J, (18)

where Constraints (16) are SCIs, while Constraints (17) restrict the problem to the only elements of X that
are either on the main diagonal or below it.

Although there are exponentially many SCIs, the corresponding separation problem can be solved in
linear time by dynamic programming, as shown in [?].

When solving the MILP formulation (4)–(12) with a branch-and-cut algorithm, we generate maximally
violated SCIs both at each node of the enumeration tree (by separating the corresponding fractional solution)
and every time a new integer solution is found (thus separating the integer incumbent solution).

5. Four-step heuristic algorithm

As we will see in Section 6, the introduction of SCIs has a remarkable impact on the solution times.
Nevertheless, even with them the MILP formulation only allows to solve small to medium size instances in
a reasonable amount of computing time.

To tackle instances of larger size, we propose an efficient heuristic that takes into account all the aspects
of the problem at each iteration by alternately and coordinately solving a sequence of subproblems, namely,
affine submodel fitting, point partition, and domain partition, as explained in detail in the following. Dif-
ferently from other heuristic approaches in the literature (see Section 2), the domain partitioning aspect is
considered at each iteration, rather than deferred to a final stage.

We start from a feasible solution composed of a point partition A1, . . . , Ak, a domain partition D1, . . . , Dk

(induced by the parameters (yj , yj0) for j ∈ J), and a set of affine submodels of parameters (wj , wj
0), for

j ∈ J . Iteratively, the algorithm tries to improve the current solution by applying the following four steps
(until convergence or until a time limit is met):

i) Submodel Fitting: Given the current point partition A1, . . . , Ak of A = {a1, . . . ,am}, determine for
each j ∈ J an affine submodel with parameters (wj , wj

0) that minimize the linear fitting error over all
the data points {(a1, b1), . . . , (am, bm)} ⊂ Rn+1. As we shall see, this is carried out by solving a single
linear program.

ii) Point Partition: Given the current set of affine submodels fj : Dj → R with fj(x) = wjx−wj
0 and

j ∈ J , identify a set of critical data points (ai, bi) ∈ Rn+1 and (re)assign them to other submodels in

8

an attempt to improve (decrease) the total linear fitting error over all the dataset. As described below,
the identification and reassignment of such points is based on an ad hoc criterion and on a related
control parameter.

iii) Domain Partition: Given the current point partition A1, . . . , Ak of A = {a1, . . . ,am}, a multicate-
gory linear classification problem is solved via Linear Programming to either find a piecewise linearly
separable domain partition D1, . . . , Dk of Rn, consistent with the current point partition, or, if none
exists, to construct a domain partition which minimizes the total misclassification error. In the lat-
ter case, i.e., when there is at least an index j ∈ J for which Aj 6⊂ Dj , we say that the previously
constructed point partition is not consistent with the resulting domain partition D1, . . . , Dk.

iv) Partition Consistency: If the current point partition and domain partition are inconsistent, the
former is modified to make it consistent with the latter. For every index j ∈ J and every misclassified
point ai (if any) belonging to Aj (i.e., for any ai ∈ A where ai ∈ Aj and ai ∈ Dj′ , for some j, j′ ∈ J
such that j 6= j′), ai is reassigned to the subset Aj′ associated with Dj′ .

In the following, we describe the four steps in greater detail.
In the Submodel Fitting step, we determine, for each j ∈ J , the submodel parameters (wj , wj

0) yielding
the smallest fitting error by solving the following linear program:

min

m∑
i=1

di (19)

s.t. di ≥ bi −wj(i)ai + w
j(i)
0 ∀i ∈ I (20)

di ≥ −bi + wj(i)ai + w
j(i)
0 ∀i ∈ I (21)

(wj , wj
0) ∈ Rn+1 ∀j ∈ J (22)

di ≥ 0 ∀i ∈ I, (23)

where j(i) denotes the submodel to which the point ai is currently assigned. Note that this linear program
decomposes into k independent linear programs, one per submodel.

Let us now consider the Point Partition step. Many clustering heuristics (see, e.g., [Mac67, BM00])
are based on the iterative reassignment of each point ai to a subset Aj whose corresponding submodel yields
the smallest fitting error. As shown in Figure 4 (a), and as it can be confirmed computationally, this choice
is likely to lead to poor quality local minima. In our method, we adopt a criterion to help identify a set
of critical points which might jeopardize the overall quality of the current solution. The criterion is an
adaptation of the corresponding one employed in the Distance-Based Point Reassignment heuristic (DBPR)
proposed in [AC13] for the k-hyperplane clustering problem.

The idea is to identify as critical those points which, not only give a large contribution to the total fitting
error for their current submodel, but also have another submodel to which they could be reassigned without
increasing too much the overall fitting error. The set of such points is determined by ranking, for each subset
Aj , each point ai ∈ Aj in nonincreasing order with respect to the ratio between its fitting error w.r.t. the
current submodel of index j(i) and the fitting error w.r.t. a candidate submodel. The latter is defined as
the submodel that best fits ai but which is different from j(i). Formally, for each j ∈ J , the criterion ranks
each point ai ∈ Aj with respect to the quantity:

|bi −wj(i)ai + w
j(i)
0 |

minj∈J\{j(i)}{|bi −wjai + wj
0|}
. (24)

The Point Partition step also relies on a control parameter α ∈ [0, 1). Given a current solution
characterized by a point partition A1, . . . , Ak and the k associated affine submodels, let m(j) denote, for
all j ∈ J , the cardinality of Aj . At each iteration and for each submodel of index j ∈ J , dαm(j)e of the
points with highest rank are reassigned to the corresponding candidate submodel, even if this leads to a

9

D
1

D
2

a
1

a
i

b
i

D
1

D
2

a
1

a
i

b
i

(a) (b)

Figure 4: (a) A solution corresponding to a local minimum for an algorithm where each point is reassigned to the submodel
yielding the smallest fitting error. (b) An improved solution that can be obtained by reassigning the point a1 in (a) which,
according to our criterion, achieves the highest ranking, to the rightmost submodel, and by updating the affine submodel fitting
as well as the domain partition.

worse objective function value. The remaining points are simply reassigned to the closest submodel (if they
are not already assigned to it). Then, α is decreased exponentially, by updating it as α := 0.99ρt, for some
parameter ρ ∈ (0, 1), where t is the index of the current iteration. For an illustration, see Figure 4 (b).

Since the reassignment of critical points, as identified by our criterion, introduces a high variability in
the sequence of solutions that are generated, the search process is stabilized by decreasing α to 0 over
the iterations, which progressively leads from substantial changes of the current solution to fine polishing
operations.

To avoid cycling effects, whenever a worse solution is found we add the whole set of the point-to-submodel
assignments that we carried out involving critical points to a tabu list of short memory. We also consider an
aspiration criterion, that is, a criterion that allows to override the tabu status of a move if, by performing
it, a solution with an objective function value that is better than that of the best solution found so far can
be achieved. Since it is computationally too demanding to compute the exact objective function value of a
solution obtained after the reassignment of a model from a submodel to another one (as it would require to
carry out the Submodel Fitting, Domain Partition, and Partition Consistency steps for each point,
at each iteration), we consider a partial aspiration criterion in which we override the tabu status of a point-
to-submodel reassignment only if the corresponding fitting error is strictly smaller than the value that was
registered when the reassignment move was added to the tabu list.

In the Domain Partition step, we derive a domain partition by constructing a piecewise linear separation
of the sets A1, . . . , Ak which minimizes the total misclassification error. This is achieved by solving a Mul-
ticategory Linear Classification problem as the following linear program, originally proposed
in [BM94]:

min

m∑
i=1

ei (25)

s.t. ei ≥ −(yj(i) − yj)ai + (y
j(i)
0 − yjo) + 1 ∀i ∈ I, j ∈ J \ {j(i)} (26)

ei ≥ 0 ∀i ∈ I (27)

(yj , yj0) ∈ Rn+1 ∀j ∈ J, (28)

where j(i) denotes the submodel to which the point ai is currently assigned, and ei represents the mis-
classification error of point ai, for all i ∈ I. If this subproblem admits an optimal solution with total
misclassification error equal to 0, then the k subsets are linearly separable, otherwise the current solution
contains at least a misclassified point ai ∈ Aj(i) where ai ∈ Dj , for some j ∈ J \ {j(i)}. Each such point is
then reassigned to Aj in the Partition Consistency step.

The overall four-step algorithm, which we refer to with the shorthand 4S-CR (4 Steps-CRiterion), starts
from a point assignment obtained by randomly generating the coefficients of k affine submodels and assigning

10

each point (ai, bi) to a submodel yielding the smallest fitting error (ties are broken arbitrarily). The above
four steps are repeated until α = 0, while storing the best solution found so far. The method is then restarted
until the time limit is reached.

Note that the Domain Partition step drives the search towards solutions that induce a suitable domain
partition, avoiding infeasible solutions which are good from a submodel fitting point of view but do not
admit a piecewise linearly separable domain partition, i.e., where Aj ⊂ Dj does not hold for all j ∈ J . Then
the Partition Consistency step makes sure that the point partition and domain partition are consistent
at the end of each iteration.

6. Computational results

In this section, we report and discuss on a set of computational results obtained when solving k-PAMF-
PLS either to optimality with branch-and-cut and symmetry breaking constraints or with our four-step
heuristic 4S-CR. First, we investigate the impact of symmetry breaking constraints when solving the problem
to global optimality. On a subset of instances for which the exact approach is viable, we compare the best
solutions obtained with the exact algorithm (within a time limit) to those produced by our heuristic method.
Then we experiment with 4S-CR on larger instances and also assess the impact of its main components on
the overall quality of the solutions found.

6.1. Experimental setup

The exact formulation is solved with CPLEX 12.5, interfaced with the Concert library in C++. The
separation algorithm for SCIs and the heuristic methods are implemented in C++ and compiled with GNU-
g++-4.3. SCIs are added to the default branch-and-cut algorithm implemented in CPLEX via both a lazy
constraint callback and a user cut callback, thus separating SCIs for both integer and fractional solutions.
This way, with lazy constraints we guarantee the lexicographic maximality of the columns of the partitioning
matrix X for any feasible solution found by the method. With user cuts, we also allow for the introduction
of SCIs at the different nodes of the branch-and-cut tree, thus tightening the LP relaxations. In 4S-CR
(and its variants, as introduced in the following), the Submodel Fitting and Domain Partition steps are
carried out by solving the corresponding LPs, namely (19)–(23) and (25)–(28), with CPLEX.

The experiments are conducted on a Dell PowerEdge Quad Core Xeon 2.0 Ghz, with 16 GB of RAM. In
the heuristics, we set ρ = 0.5 and adopt a tabu list with a short memory of two iterations.

6.2. Test instances

We consider both a set of structured, randomly generated instances, as well as some real-world ones taken
from the UCI repository [FA10].

We classify the random instances into four groups: small (m = 20, 30, 40, 50, 60, 75, 100 and n =
2, 3, 4, 5), medium (m = 500 and n = 2, 3, 4, 5), and large (m = 1000 and n = 2, 3, 4, 5)4. They are
constructed by randomly sampling the data points ai and the corresponding observations bi from a randomly
generated (discontinuous) piecewise affine model with k = 5 pieces and an additional Gaussian noise. First,
we generate k subdomains D1, . . . , Dk by solving a multiway linear classification problem on k randomly
chosen representative points in Rn. Then, we randomly choose the submodel parameters (wj , wj

0) for all
j ∈ J and sample, uniformly at random, the m points {a1, . . . ,am} ∈ Rn. For each sampled point ai,
we keep track of the subdomain Dj(i) which contains it and set bi to the value that the affine submodel of

index j(i) takes in ai, i.e., wj(i)ai − wj(i)
0 . Then, we add to bi an additive Gaussian noise with 0 mean and

a variance which is chosen, for each submodel, by sampling uniformly at random within [7
10 ·

3
1000 ,

3
1000]. For

4We do not consider instances with n = 1 since k-PAMF-PLS is pseudopolynomially solvable in this case. Indeed, if the
domain coincides with R, then the number of linear domain partitions is, at most, O(mk). An optimal solution to k-PAMF-PLS
can thus be found by constructing all such partitions and then solving, for each of them, an affine model fitting problem in
polynomial time by Linear Programming.

11

convenience, but w.l.o.g., after an instance has been constructed, we rescale all its data points (and their
observations) so that they belong to [0, 10]n+1.

As to the real-world instances, we consider four datasets from the UCI repository: Auto MPG (auto),
Breast Cancer Wisconsin Original (breast), Computer Hardware (cpu), and Housing (house). We remove
data points with missing features, convert each categorical attribute (if any) to a numerical value, and nor-
malize the data so that each point belongs to the interval [0, 10]n+1. We then perform feature extraction via
Principal Component Analysis (PCA), using the Matlab toolbox PRTools, calling the function PCAM(A,0.9),
where A is the Matlab data structure where the data points are stored. After preprocessing, the instances
are of the following size: m = 397, n = 3 (auto), m = 698, n = 5 (breast), m = 209, n = 5 (cpu), and
m = 506, n = 8 (house).

All the instances are solved with different values of k, namely, k = 2, 3, 4, 5. This way, the experiments
are in line with a real-world scenario where the complexity of the underlying model is unknown.

Throughout the section, speedup factors and average improvements will be reported as ratios of geometric
means.

6.3. Exact solutions via the MILP formulations

We test our MILP formulation with and without SCIs on the small dataset, considering four figures:

• total computing time (in seconds) needed to solve the problem, including the generation of SCIs as
symmetry breaking constraints (Time);

• total number of branch-and-bound nodes that have been generated, divided by 1000 (Nodes[k]);

• percent gap at the end of the computations (Gap), defined as 100 |LB−UB|
10−4+|LB| , where LB and UB are

the tightest lower and upper bounds that have been found; if LB = 0, a “-” is reported;

• total number of generated symmetry breaking constraints (Cuts).

The instances are solved for k = 2, 3, 4, 5, within a time limit of 3600 seconds. We run CPLEX in deterministic
mode on a single thread with default settings. In all the cases, we set M = M1 = M2 = 1000.

The results are reported in Tables 1 for k = 2, 3 and in Table 2 for k = 4, 5. In the second table, we omit
the results for the instances with n = 4, 5 as, both with or without SCIs, no solutions with a finite gap are
found within the time limit (i.e., the lower bound LB is always 0). Note that, for k = 2, symmetry is broken
by just fixing the top left element of the matrix X to 1, i.e., by letting, w.l.o.g., x11 = 1. Hence, we do not
resort to the generation of SCIs in this case.

Let us neglect the case of k = 2 and focus on the full set of 56 k-PAMF-PLS problems that are considered
for this dataset (28 instances for k = 3 and 14 for k = 4, 5). Without SCI inequalities, we achieve an optimal
solution in 24 cases out of 56 (43%). The introduction of SCIs has a very positive impact. They allow to
solve to optimality 10 more instances, for a total of 34 (60.1%). SCIs also yield a substantial reduction in
both computing time and number of nodes. When focusing on the 24 instances solved by both variants of the
algorithm, the overall results show that the introduction of SCIs yields a speedup, on (geometric) average,
of almost 3 times, corresponding to a reduction of 66% of the computing times. The number of nodes is
reduced by the same factor of 66%. Interestingly, this improvement is obtained by adding a rather small
number of cuts which, in practice, prove to be highly effective. See, e.g., the instance with m = 40, n = 3
which, when solved for k = 3 with SCIs, presents a speedup in the computing time, when compared to
the case without SCIs, of 4.6 times (corresponding to a reduction of 78%) with the sole introduction of 19
symmetry breaking constraints.

In our preliminary experiments, we observed the generation of a higher number of cuts when employing
older versions of CPLEX, such as 12.1 and 12.2 whereas, with CPLEX 12.5, their number is significantly
smaller. This is, most likely, a consequence of the introduction of more aggressive techniques for symme-
try detection and symmetry breaking in the latest versions of CPLEX. We nevertheless remark that the
improvement in computing time provided by the introduction of SCIs appears to be comparable for all the
versions of CPLEX 12, regardless of the number of cuts that are generated.

12

Table 1: Results obtained on the small dataset when solving the MILP formulation for k = 2 (without SCIs) and for k = 3
(with and without SCIs). For k = 3 and for each instance, if both variants achieve an optimal solution, the smallest number of
nodes and computing time are highlighted in boldface. If at least a variant does not achieve an optimal solution, the smallest
gap is highlighted.

k=2 k=3

without SCIs without SCIs with SCIs

n m Time Nodes[k] Gap Time Nodes[k] Gap Time Nodes[k] Gap Cuts

2 20 0.1 0.2 0.0 2.3 2.0 0.0 2.1 1.1 0.0 12
2 30 0.7 0.5 0.0 4.8 6.5 0.0 4.3 5.0 0.0 10
2 40 0.7 0.7 0.0 7.9 11.3 0.0 4.1 4.0 0.0 18
2 50 0.8 0.6 0.0 9.3 9.8 0.0 4.0 5.2 0.0 17
2 60 1.2 1.0 0.0 14.7 17.9 0.0 8.7 8.3 0.0 8
2 75 2.4 1.2 0.0 20.2 20.7 0.0 8.8 7.7 0.0 8
2 100 3.8 1.7 0.0 43.6 28.9 0.0 43.1 28.4 0.0 13

3 20 0.4 0.9 0.0 13.9 29.0 0.0 5.6 9.3 0.0 7
3 30 0.7 1.2 0.0 58.3 124.4 0.0 35.6 55.1 0.0 20
3 40 1.8 2.2 0.0 226.9 291.7 0.0 49.1 64.6 0.0 19
3 50 1.5 3.1 0.0 603.6 467.0 0.0 117.7 122.2 0.0 15
3 60 4.7 5.1 0.0 615.9 440.3 0.0 171.5 147.8 0.0 22
3 75 5.4 7.4 0.0 3600.0 802.4 76.7 512.7 324.8 0.0 29
3 100 9.9 19.6 0.0 3600.0 757.1 89.4 3196.2 1272.8 0.0 42

4 20 1.2 2.3 0.0 131.0 270.1 0.0 35.2 84.0 0.0 10
4 30 2.1 3.8 0.0 633.1 802.8 0.0 167.8 224.8 0.0 11
4 40 5.6 11.1 0.0 3600.0 1519.4 79.3 3345.2 1867.2 0.0 21
4 50 8.6 20.8 0.0 3600.0 1096.8 - 3600.0 1206.0 85.3 19
4 60 15.2 39.0 0.0 3600.0 970.8 - 3600.0 1238.7 89.7 22
4 75 50.3 87.1 0.0 3600.0 851.1 - 3600.0 1014.9 86.6 17
4 100 98.9 192.3 0.0 3600.0 529.5 - 3600.0 508.1 - 26

5 20 1.9 5.6 0.0 679.6 974.1 0.0 170.0 311.7 0.0 11
5 30 6.3 16.2 0.0 3600.0 1775.3 - 3600.0 2054.0 73.3 18
5 40 27.7 61.4 0.0 3600.0 1422.8 - 3600.0 1363.3 - 13
5 50 54.4 125.6 0.0 3600.0 1118.3 - 3600.0 1132.1 - 24
5 60 491.2 830.6 0.0 3600.0 963.5 - 3600.0 1009.1 - 17
5 75 1751.1 1841.4 0.0 3600.0 788.0 - 3600.0 815.1 - 17
5 100 3600.0 3649.2 9.3 3600.0 769.3 - 3600.0 623.1 - 32

13

Table 2: Results obtained on the small dataset when solving the MILP formulation for k = 4, 5 with and without SCIs. For
each instance, if both variants achieve an optimal solution, the smallest number of nodes and computing time are highlighted
in boldface. If at least a variant does not achieve an optimal solution, the smallest gap is highlighted.

k
=
4

k
=
5

w
it
h
o
u
th

S
C
Is

w
it
h
S
C
Is

w
it
h
o
u
t
S
C
I

w
it
h
S
C
I

n
n

T
im

e
N
o
d
es
[k
]
G
a
p

T
im

e
N
o
d
es
[k
]
G
a
p
C
u
ts

T
im

e
N
o
d
es
[k
]
G
a
p

T
im

e
N
o
d
es
[k
]
G
a
p
C
u
ts

2
2
0

7
.6

1
2
.9

0
.0

4
.5

4
.0

0
.0

2
7

1
1
2
.2

1
5
2
.4

0
.0

3
1
.1

3
5
.3

0
.0

2
6
8

2
3
0

3
1
.6

4
1
.9

0
.0

7
.2

9
.0

0
.0

3
9

5
5
4
.8

4
4
1
.3

0
.0

5
9
.6

4
8
.2

0
.0

3
9
7

2
4
0

1
0
5
.8

1
1
5
.3

0
.0

1
9
.0

1
8
.6

0
.0

8
6

3
6
0
0
.0

1
3
0
8
.2

2
8
.7

9
8
.2

7
5
.1

0
.0

4
7
2

2
5
0

1
5
6
.0

1
4
5
.3

0
.0

3
5
.8

3
9
.6

0
.0

1
7
4

3
6
0
0
.0

1
3
4
7
.0

2
0
.3

3
4
7
.4

1
5
3
.2

0
.0

8
9
3

2
6
0

4
1
1
.9

2
7
5
.1

0
.0

2
4
4
.1

1
4
3
.0

0
.0

8
6

3
6
0
0
.0

8
6
5
.1

9
0
.2

1
0
6
2
.9

4
5
3
.1

0
.0

7
8
3

2
7
5

5
2
0
.9

3
2
8
.3

0
.0

1
5
8
.5

1
1
8
.0

0
.0

1
5
5

3
6
0
0
.0

5
7
7
.0

9
7
.6

2
3
8
5
.9

7
3
9
.7

0
.0

1
0
3
4

2
1
0
0

3
6
0
0
.0

6
7
3
.3

1
5
.7

3
6
7
.0

1
6
9
.6

0
.0

2
3
3

3
6
0
0
.0

3
5
6
.0

9
8
.6

3
6
0
0
.0

3
1
9
.2

9
8
.2

1
1
0
5

3
2
0

1
0
6
7
.9

1
2
4
6
.5

0
.0

1
1
8
.8

1
7
6
.2

0
.0

6
7

3
6
0
0
.0

2
3
0
6
.5

-
2
0
1
3
.0

1
4
0
1
.2

0
.0

4
2
8

3
3
0

3
6
0
0
.0

1
5
9
0
.5

-
2
3
3
6
.6

1
4
8
0
.7

0
.0

1
2
5

3
6
0
0
.0

1
4
9
1
.6

-
3
6
0
0
.0

1
2
3
6
.9

-
8
2
5

3
4
0

3
6
0
0
.0

1
1
8
8
.1

-
3
6
0
0
.0

1
3
4
4
.4

3
4
.2

9
1

3
6
0
0
.0

1
0
7
7
.4

-
3
6
0
0
.0

8
7
1
.3

-
3
8
5

3
5
0

3
6
0
0
.0

8
9
6
.5

-
3
6
0
0
.0

8
4
7
.6

9
4
.4

1
7
4

3
6
0
0
.0

7
3
8
.2

-
3
6
0
0
.0

7
0
4
.0

-
4
9
6

3
6
0

3
6
0
0
.0

7
5
4
.1

-
3
6
0
0
.0

6
9
7
.5

-
1
2
0

3
6
0
0
.0

7
2
5
.4

-
3
6
0
0
.0

5
9
7
.2

-
5
8
0

3
7
5

3
6
0
0
.0

6
2
6
.7

-
3
6
0
0
.0

4
5
8
.8

-
1
8
7

3
6
0
0
.0

4
4
4
.9

-
3
6
0
0
.0

3
3
1
.0

-
8
4
3

3
1
0
0

3
6
0
0
.0

4
4
0
.5

-
3
6
0
0
.0

3
7
0
.5

-
2
6
7

3
6
0
0
.0

3
2
4
.4

-
3
6
0
0
.0

2
2
1
.4

-
1
6
9
1

14

Although the introduction of SCIs clearly increases the number of instances which can be solved to
optimality, the results in Tables 1 and 2 show that the exact approach via mixed-integer linear programming
might require large computing times even for fairly small instances with n ≥ 3 and m ≥ 40 for k ≥ 4. For
k = 2, all the instances are solved to optimality, with the sole exception of the instance with m = 100, n = 5
(which reports a gap of 9.3%). For k = 3, Table 1 shows that, already for n = 4 and m ≥ 50, the gap after
one hour is still larger than 80%. According to Table 2, the exact approach becomes impractical for n = 3
and m ≥ 40 for k = 4, and for n = 3 and m ≥ 30 for k = 5.

It has recently been argued that, in a number of data mining problems, feeding a heuris-
tically generated solution to the MILP solver as a warm-start might give a significant perfor-
mance boost [?]. Unfortunately, this is not the case for k-PAMF-PLS, for which experiments
with this approach only showed a negligible impact. This is, arguably, due to the fact that,
in most of the instances that we cannot solve within the time limit, the solver fails either to
prove optimality or to return a reasonable gap due to a poor dual (rather than primal) bound.
SAY MORE? IL PARAGRAFO SEMBRA CHOPPATO OFF DI UNA CONCLUSIONE.

6.4. Comparison between the four-step heuristic 4S-CR and the MILP formulation

Before assessing the effectiveness of 4S-CR on larger instances, we compare the solutions it provides with
the best ones found via mixed-integer linear programming on the small dataset (within the time limit). The
results are reported in Table 3. For a fair comparison, 4S-CR is run, for the instances that are solved to
optimality by the exact method, for the same time taken by the latter. For the instances for which an
optimal solution has not been found, 4S-CR is run up to the time limit of 3600 seconds.

When comparing the quality of the solutions found by 4S-CR with those found by the MILP formulation
with SCIs, we register, for k = 2, very close to optimal solutions with, on (geometric) average, a 4% larger
fitting error. This number decreases to 1% for k = 3. For larger values of k, namely k = 4 and k = 5,
for which the number of instances that are unsolved when adopting the MILP formulation is much larger,
4S-CR yields solutions that are much better than those found via mixed-integer linear programming. When
neglecting the instances with an optimal solution of value 0 (which would skew the geometric mean), the
solutions provided by 4S-CR are, on geometric average, better than those obtained via the exact method by
14% for k = 4 and by 20% for k = 5.

For k = 2, 3, 4, 5, 4S-CR finds equivalent or better solutions that those obtained via mixed-integer linear
programming in, respectively, 11, 15, 18, and 19 cases, with strictly better solutions in, respectively, 1, 5,
16, and 15 cases. Overall, when considering the instances jointly, 4S-CR performs as good or better than
mixed-integer linear programming in 63 cases out of 112 (28 instances, each solved 4 times, once per value
of k), strictly improving over the latter in 37 cases. This indicates that the quality of the solutions found
via 4S-CR can be quite high even for small-size instances and that the difference w.r.t. the exact method,
at least on the instances for which a comparison is viable, seems to be increasing with the number of points
m, the number of dimensions n, and the number of submodels k.

Note that, for the instance with m = 30, n = 3 and for both k = 2 and k = 3, the MILP formulation
yields, in strictly less than the time limit, a solution which is worse than the corresponding one found by
4S-CR. As discussed in Section 4, this is most likely due to the selection of too small values for the parameters
M1 and M2. Experimentally, we observed that the issue can be avoided by choosing M = M1 = M2 = 10000,
although at the cost of a substantially larger computing time (due to the need for a higher numerical precision
to handle the larger differences between the magnitudes of the coefficients in the formulation).

6.5. Experiments with 4S-CR on larger instances and impact of the main 4S-CR features

We now present the results obtained with 4S-CR on larger instances and assess the impact of the main
features of 4S-CR (i.e., the criterion for identifying and reassigning critical points in the Point Partition

step, the Domain Partition step, and the Partition Consistency step, applied at each iteration) on the
quality of the solutions found.

As already mentioned, we set ρ = 0.5 in all the experiments involving our criterion for identifying critical
points and we consider a tabu list with a memory of two iterations. When tuning the parameters, we

15

Table 3: Comparison between the best results obtained for k = 2, 3, 4, 5 on the small instances when solving the MILP
formulation (with symmetry breaking constraints and within a time limit of 3600 seconds) and those obtained via 4S-CR. The
latter is run for as much time as that required to solve the MILP formulation (within the time limit). For each instance, the
value of the best solution found is highlighted in boldface.

k = 2 k = 3 k = 4 k = 5

Objective Objective Objective Objective
n m Time MILP 4S-CR Time MILP 4S-CR Time MILP 4S-CR Time MILP 4S-CR

2 20 0.1 18.3 22.4 2.1 9.6 9.6 4.5 6.1 7.1 31.1 4.5 6.1
2 30 0.1 30.5 30.5 4.3 19.3 19.3 7.2 10.0 10.0 59.6 7.7 8.8
2 40 0.5 61.3 61.3 4.1 37.8 45.4 19.0 24.7 35.5 98.2 14.8 21.2
2 50 0.3 56.0 56.0 4.0 39.1 40.9 35.8 26.9 29.5 347.4 22.1 22.1
2 60 1.2 86.6 91.7 8.7 53.1 61.8 244.1 43.2 53.1 1062.9 35.7 43.5
2 75 1.7 40.5 45.4 8.8 31.3 31.6 158.5 28.6 30.5 2385.9 27.3 28.4
2 100 1.6 114.9 114.9 43.1 62.9 62.9 367.0 48.4 48.5 3600.0 187.4 48.4

3 20 0.3 11.3 11.3 5.6 4.3 4.6 118.8 2.3 2.4 2013.0 0.4 0.9
3 30 0.7 14.1 13.8 35.6 9.4 9.0 2336.6 6.3 6.3 3600.0 4.5 4.7
3 40 2.9 29.3 32.3 49.1 19.6 21.2 3600.0 14.7 15.5 3600.0 11.7 11.7
3 50 2.0 48.6 55.5 117.7 26.3 26.3 3600.0 20.2 17.9 3600.0 21.2 15.1
3 60 4.9 40.0 40.0 171.5 22.7 25.0 3600.0 22.7 17.5 3600.0 17.3 12.9
3 75 5.9 72.5 82.4 512.7 43.9 47.9 3600.0 35.2 31.6 3600.0 54.0 31.5
3 100 10.3 86.5 88.0 3196.2 51.3 51.3 3600.0 77.2 33.6 3600.0 69.2 33.2

4 20 1.2 7.5 7.5 35.2 2.3 2.3 3600.0 0.2 0.3 2.1 0.0 0.4
4 30 1.2 20.0 20.3 167.8 6.8 6.8 3600.0 3.5 3.4 3600.0 1.3 1.4
4 40 4.1 34.4 34.4 3345.2 16.5 16.5 3600.0 11.0 10.3 3600.0 7.4 6.8
4 50 6.2 38.0 38.0 3600.0 20.5 20.0 3600.0 19.0 13.4 3600.0 17.7 6.3
4 60 12.1 40.1 41.0 3600.0 28.8 27.3 3600.0 24.8 17.9 3600.0 21.1 15.5
4 75 23.0 85.0 88.5 3600.0 49.4 53.9 3600.0 50.4 37.8 3600.0 46.1 32.4
4 100 57.0 110.3 118.0 3600.0 113.9 74.0 3600.0 139.3 49.7 3600.0 117.6 43.3

5 20 2.6 8.9 8.9 170.0 0.5 0.5 0.3 0.0 0.5 0.6 0.0 0.0
5 30 4.0 17.1 19.2 3600.0 6.7 6.7 3600.0 1.9 1.7 3600.0 0.3 0.6
5 40 12.1 37.9 41.7 3600.0 18.7 19.5 3600.0 13.3 8.9 3600.0 6.7 5.1
5 50 32.0 28.9 29.4 3600.0 21.7 17.9 3600.0 15.8 12.4 3600.0 9.7 8.4
5 60 457.1 58.4 58.6 3600.0 43.9 44.0 3600.0 37.5 31.9 3600.0 33.6 21.2
5 75 820.9 62.6 65.0 3600.0 26.7 29.4 3600.0 50.9 20.7 3600.0 53.0 18.4
5 100 3600.0 79.3 84.1 3600.0 56.0 60.8 3600.0 60.5 49.3 3600.0 61.6 42.9

16

observed improved results on the smaller instances when increasing ρ, as opposed to worse ones on the larger
instances. This is, most likely, a consequence of the number of iterations carried out within the time limit,
which becomes much smaller for a larger value of ρ, thus forcing the method to halt with a solution which
is too close to the starting one. As to the tabu list, we observed that a short memory of two iterations
suffices to prevent loops. Indeed, due to the nature of the problem as well as due to the many aspects of
k-PAMF-PLS that our method considers, the values of the parameters of the piecewise-affine submodels
change often dramatically within very few iterations. This way, few iterations taking place after a worsening
move typically suffice to prevent that a point-to-submodel reassignment take place twice, thus making the
occurrence of loops extremely unlikely.

To assess the impact of the Point Partition step based on the criterion for critical points (and on the
corresponding control parameter), we introduce a variant of 4S-CR where, in the former step, every point
(ai, bi) is (re)assigned to a submodel yielding the smallest fitting error. This is in line with many popular
clustering heuristics, as reported in Section 2. We refer to this method as 4S-CL (where “CL” stands for
“closest”).

To evaluate the relevance of considering, in 4S-CR, the domain partition aspect directly at each iteration
(via the Domain Partition and Partition Consistency steps), we also consider a standard (STD) two-
phase method which, first, addresses the clustering aspect of k-PAMF-PLS and, only at the end, before
halting, takes the domain partition aspect into account, thus tackling the problem in two distinct,
successive phases: a clustering phase and a classification phase. In the algorithm, which we consider
in two versions, we iteratively alternate between the Submodel Fitting and Point Partition steps. In the
latter step, we either reassign every point to the “closest” submodel (STD-CL) or to that indicated by our
criterion (STD-CR). After a local minimum has been reached, a piecewise linearly separable domain partition
with minimum misclassification error is derived by solving a multiway linear classification problem via linear
programming, as in Problem (25)–(28). Since STD-CL is similar to most of the standard techniques proposed
in the literature (see Section 2), we consider it as the baseline method and compare the other methods (4S-
CR, 4S-CL, and STD-CR) to it.

For completeness, we also consider, along the lines of [?], an extension of STD-CL obtained
after introducing an extra third phase, based on a criterion proposed in [?]. The criterion
is applied as a third phase in STD, between the clustering and classification phases. We
refer to this algorithm as STD-CL-B. The criterion is based on the identification of so-called
undecidable points, namely, data points which lie within an error δ w.r.t., at least, two affine
submodels. According to the criterion, each undecidable data point ~ai is iteratively reassigned
to the submodel to which the majority of the c points which are closer, in `2-norm, to ~ai are
assigned. We remark that [?] addresses a piecewise-affine model fitting problem where k is
minimized, subject to a maximum fitting error of δ. To adapt the criterion to k-PAMF-PLS,
in our experiments we set δ to the average error between each data point and its current
submodel5. We carry out the reassignment of undecidable points 5 times, as suggested in [?
], each time followed by a Submodel Fitting step.

The results for the medium, large, and UCI datasets, obtained with a time limit of, respectively, 900, 1800,
and 900 seconds, are reported in Table 4. The comparison shows that 4S-CR outperforms the baseline method
STD-CL in almost all the cases. When considering the medium instances, 4S-CR yields an improvement in
objective function value of, on geometric average, 8%, 21%, 21%, and 24% for, respectively, k = 2, 3, 4, and
5. On the large instances, the improvement is of 16%, 24%, 29%, and 24%. For the four UCI instances, the
improvement is of 6%, 9%, 13%, and 16%. When considering the three datasets jointly, the improvement is
of 8%, 21%, 21%, 24%. On geometric average, for all the values of k, 4S-CR improves on the fitting error of
STD-CL by 20%. On a total of 112 instances (for the different values of k) of k-PAMF-PLS, 4S-CR achieves
the best solution in 103 cases (92%).

When comparing 4S-CL to STD-CL, we register, on geometric mean and for the different values of k,

5Experiments with δ equal to the average error scaled by a factor in {0.1, 0.25, 0.50, 0.75, 1} revealed that the best results
are obtained with a factor of 1.

17

Table 4: Results obtained with 4S-CR, when compared to STD-CL, STD-CR, 4S-CL, and STD-CL-B on the medium, large,
and UCI instances, within a time limit of, respectively, 900, 1800, and 900 seconds, for k = 2, 3, 4, 5. For each instance, the
value of the best solution found is highlighted in boldface.

k
=

2
k

=
3

k
=

4
k
=

5

n
m

S
T

D
-

S
T

D
-

4
S

-C
L

4
S

-C
R

S
T

D
-

S
T

D
-

S
T

D
-

4
S

-C
L

4
S

-C
R

S
T

D
-

S
T

D
-

S
T

D
-

4
S

-C
L

4
S

-C
R

S
T

D
-

S
T

D
-

S
T

D
-

4
S

-C
L

4
S

-C
R

S
T

D
-

C
L

C
R

C
L

-B
C

L
C

R
C

L
-B

C
L

C
R

C
L

-B
C

L
C

R
C

L
-B

medium

2
5
0
0

6
5
8
.6

8
6
3
.4

6
5
9
.7

5
9
2
.7

6
5
8
.7

6
6
0
.2

7
3
4
.7

5
9
2
.7

4
7
2
.9

6
6
0
.2

6
3
8
.3

7
9
0
.6

4
8
5
.8

3
4
5
.7

6
1
0
.8

6
3
8
.3

7
8
4
.9

4
9
3
.1

4
7
2
.9

6
6
3
.4

2
5
0
0
4
0
6
.2

4
0
6
.2

4
0
6
.2

4
0
6
.2

4
0
6
.2

4
0
0
.1

4
0
0
.1

4
0
0
.1

2
7
4
.1

4
0
0
.1

4
1
6
.8

4
1
6
.8

3
8
7
.8

2
5
4
.0

4
1
6
.8

4
1
6
.8

4
0
0
.1

3
8
3
.6

2
5
4
.0

4
1
6
.8

2
5
0
0

4
0
8
.5

4
0
8
.5

4
0
8
.4

4
0
8
.4

4
0
8
.5

3
6
5
.6

2
9
2
.7

3
9
4
.3

2
6
7
.4

4
0
8
.6

2
8
8
.7

2
6
5
.4

3
2
5
.6

2
6
6
.7

2
8
1
.0

3
3
0
.5

4
2
4
.4

3
2
5
.6

2
2
6
.3

3
2
9
.1

3
5
0
0

3
9
2
.1

3
8
6
.7

3
7
8
.7

3
5
8
.2

3
9
1
.8

3
3
4
.0

3
4
6
.1

3
1
0
.7

2
7
9
.2

3
3
4
.6

3
1
8
.6

3
1
9
.9

3
0
9
.9

2
8
6
.6

3
2
9
.8

3
4
5
.5

3
5
1
.0

3
1
0
.5

2
8
1
.3

2
8
8
.4

3
5
0
0

5
1
8
.3

4
8
4
.1

4
7
2
.9

4
4
8
.5

5
0
6
.8

5
0
0
.3

3
7
1
.6

3
0
0
.0

2
6
2
.7

5
0
1
.3

4
9
6
.2

5
1
1
.8

2
8
8
.2

2
5
7
.4

4
9
4
.9

4
9
1
.3

5
3
3
.3

2
9
2
.4

2
5
6
.8

4
0
8
.1

3
5
0
0

6
9
9
.7

6
9
8
.6

5
8
0
.4

5
7
4
.6

7
5
0
.0

6
1
2
.2

6
2
7
.9

5
0
8
.8

4
4
7
.1

5
2
2
.9

5
0
2
.1

5
4
8
.1

4
4
7
.9

4
4
9
.3

4
5
9
.0

5
3
2
.7

5
6
4
.3

4
1
1
.1

4
2
7
.6

5
0
3
.0

4
5
0
0

4
2
1
.1

4
2
6
.6

4
1
2
.2

4
0
3
.7

4
2
4
.6

3
7
8
.0

3
9
2
.0

3
3
4
.1

3
2
5
.3

3
6
0
.3

3
0
8
.4

3
2
5
.2

2
6
8
.8

2
6
0
.2

2
9
5
.8

3
2
8
.1

3
3
9
.1

2
0
6
.2

1
9
3
.0

2
3
4
.0

4
5
0
0

6
6
9
.0

6
7
0
.0

6
4
3
.0

6
2
3
.8

6
6
8
.5

5
3
6
.6

5
2
1
.1

5
0
5
.5

4
7
4
.3

5
4
6
.2

4
3
5
.5

4
9
2
.3

3
9
5
.7

3
7
5
.2

3
9
4
.8

4
2
3
.4

4
2
9
.2

3
7
7
.2

3
1
8
.8

3
3
9
.4

4
5
0
0

6
4
2
.2

6
2
5
.2

5
8
7
.0

5
6
9
.3

6
4
1
.6

5
5
3
.9

5
1
6
.2

5
2
8
.5

5
1
3
.2

5
9
7
.5

5
5
0
.9

5
8
0
.9

4
7
4
.9

4
9
3
.1

5
3
9
.9

5
6
6
.9

5
6
6
.9

4
7
9
.5

4
7
2
.4

5
3
4
.2

5
5
0
0

5
3
1
.7

5
1
1
.6

5
2
0
.5

5
0
3
.9

5
3
1
.7

3
8
1
.8

4
0
3
.2

3
7
0
.4

3
6
0
.8

3
6
8
.5

2
8
0
.4

3
4
8
.2

2
6
4
.0

2
4
2
.8

2
8
8
.9

2
7
7
.6

2
7
8
.7

2
3
0
.3

2
6
4
.7

2
8
8
.7

5
5
0
0

3
7
3
.9

3
9
9
.0

3
7
1
.4

3
4
4
.9

3
8
4
.4

2
5
7
.3

3
8
8
.7

2
6
1
.0

2
5
2
.3

2
5
7
.3

2
4
6
.1

2
7
3
.9

2
4
0
.7

2
3
0
.5

2
4
1
.8

2
3
2
.0

2
9
8
.9

2
3
7
.7

2
1
8
.8

2
3
3
.8

5
5
0
0

6
3
5
.1

6
1
6
.0

6
0
3
.4

5
9
3
.7

6
2
6
.1

6
1
0
.4

5
9
2
.0

5
3
6
.4

5
0
9
.8

6
0
5
.9

4
4
9
.3

6
1
6
.0

4
7
2
.5

4
2
1
.7

4
5
6
.6

4
4
1
.4

6
2
0
.6

4
6
4
.5

4
8
9
.0

4
2
6
.0

large

2
1
0
0
0
6
5
4
.5

6
5
4
.5

6
5
4
.5

6
5
4
.5

6
5
4
.5

6
5
4
.1

6
5
4
.1

5
7
2
.5

5
7
2
.5

6
5
4
.1

6
5
4
.6

6
7
0
.0

5
7
2
.5

5
5
7
.6

6
5
4
.6

5
6
5
.7

6
4
4
.5

5
7
2
.5

5
5
7
.8

5
6
5
.7

2
1
0
0
0

1
6
8
5
.4

1
6
1
8
.5

1
4
5
2
.5

1
2
4
1
.9

1
6
8
5
.4

1
6
8
5
.4

9
1
6
.0

9
3
1
.0

7
9
0
.5

1
6
8
5
.4

1
7
1
5
.6

1
9
9
4
.0

9
3
1
.0

5
8
1
.6

1
9
1
8
.1

1
2
0
8
.2

1
9
0
3
.3

9
3
1
.0

6
4
7
.8

1
5
0
4
.8

2
1
0
0
0

1
4
2
3
.0

1
0
4
2
.1

1
0
1
9
.9

9
5
3
.2

1
4
2
3
.0

1
1
0
2
.5

9
7
0
.6

8
4
9
.1

6
3
4
.3

1
1
2
4
.7

1
1
9
0
.9

1
4
0
5
.6

8
0
9
.0

5
0
1
.1

1
1
9
5
.7

9
5
3
.2

1
2
8
9
.1

7
5
2
.0

4
9
0
.1

1
2
3
3
.1

3
1
0
0
0

1
3
7
1
.2

1
1
2
7
.6

1
0
9
5
.8

9
7
6
.8

1
3
9
7
.5

1
1
8
2
.8

1
0
5
3
.2

7
4
3
.2

7
2
9
.7

1
1
9
6
.6

7
8
0
.3

1
0
8
9
.1

7
3
2
.0

6
2
1
.9

1
0
4
1
.5

1
0
0
3
.7

1
1
3
2
.4

7
1
4
.2

6
0
5
.7

1
0
7
5
.6

3
1
0
0
0

1
0
9
9
.5

1
0
7
2
.9

1
0
2
3
.5

9
3
5
.8

1
0
9
9
.5

9
6
9
.5

1
0
1
0
.8

9
5
3
.6

8
2
9
.5

9
7
4
.8

9
9
7
.3

1
0
1
4
.7

9
3
4
.8

7
9
3
.6

1
0
2
2
.0

9
5
7
.3

1
0
4
7
.9

9
4
3
.4

6
5
4
.5

1
0
3
3
.6

3
1
0
0
0

1
5
4
5
.1

1
4
0
8
.3

1
1
0
7
.6

1
0
8
4
.2

1
5
4
5
.1

1
2
1
7
.2

1
1
7
1
.3

8
5
3
.9

8
0
5
.0

1
1
7
2
.7

1
1
5
2
.5

1
2
0
9
.7

7
7
7
.9

5
3
6
.4

1
1
4
5
.5

9
1
9
.5

1
2
5
8
.6

7
7
7
.9

6
1
6
.5

9
9
3
.0

4
1
0
0
0

5
2
0
.1

5
1
6
.2

5
1
9
.4

5
0
3
.9

5
2
0
.1

5
2
0
.1

5
4
7
.7

4
8
1
.1

4
2
2
.3

5
2
0
.1

5
2
0
.1

5
5
7
.3

4
3
8
.2

4
5
5
.0

5
3
7
.7

5
0
3
.7

5
1
4
.3

4
8
3
.1

4
4
3
.1

5
3
6
.1

4
1
0
0
0

6
7
2
.8

6
7
2
.6

6
6
6
.0

6
5
5
.0

6
7
2
.8

5
3
6
.9

5
4
4
.7

5
0
2
.9

4
8
0
.8

5
1
8
.6

5
0
0
.7

5
1
3
.8

4
8
1
.9

4
5
0
.9

4
8
4
.4

5
1
1
.2

5
2
1
.9

4
7
8
.5

4
6
3
.6

4
8
4
.3

4
1
0
0
0

1
1
5
4
.7

1
0
7
6
.1

9
5
1
.0

9
2
4
.1

1
1
5
4
.7

9
6
3
.3

9
7
9
.4

8
5
4
.6

7
9
7
.7

9
8
4
.5

8
6
9
.5

8
9
5
.1

7
0
5
.8

6
2
5
.1

7
6
5
.3

9
2
8
.0

9
5
0
.6

7
5
8
.5

7
1
0
.4

7
9
4
.2

5
1
0
0
0

1
1
7
4
.6

1
1
6
5
.9

1
1
1
0
.6

1
0
9
2
.8

1
1
8
5
.5

1
0
7
9
.3

1
0
6
1
.9

9
7
2
.2

9
4
1
.1

1
0
7
3
.8

9
1
0
.1

8
8
3
.1

8
6
1
.4

8
4
6
.0

8
6
8
.6

9
1
5
.8

1
0
4
9
.4

8
8
0
.2

8
5
6
.1

7
9
3
.9

5
1
0
0
0

9
8
5
.3

9
3
6
.9

8
7
8
.6

8
5
9
.3

9
9
4
.5

7
6
0
.3

9
1
2
.1

7
0
4
.9

6
8
5
.8

7
8
5
.1

6
7
1
.9

6
8
9
.2

6
4
1
.4

6
1
4
.7

6
5
4
.5

6
7
1
.2

7
1
7
.1

6
5
6
.9

6
4
6
.8

6
3
1
.8

5
1
0
0
0

5
7
0
.3

5
6
8
.1

5
7
3
.2

5
6
5
.2

5
7
9
.2

4
8
7
.7

5
3
1
.5

4
9
1
.3

4
7
1
.5

4
8
8
.2

4
7
4
.0

5
2
1
.2

4
6
9
.9

4
6
4
.5

4
8
1
.6

4
8
1
.4

4
8
6
.5

4
7
6
.2

4
5
1
.3

4
8
1
.2

UCIa
u
to

3
3
9
7

2
3
.0

2
3
.0

2
2
.6

2
2
.1

2
3
.8

2
1
.2

2
3
.9

2
1
.0

2
0
.8

2
1
.5

2
1
.2

2
3
.9

1
9
.5

1
9
.7

2
1
.9

2
1
.0

2
3
.3

1
8
.2

1
9
.1

2
1
.6

b
r
e
a
st

5
6
9
8

4
0
.0

3
5
.7

4
0
.0

3
5
.7

4
0
.0

3
5
.7

3
3
.6

3
5
.7

3
3
.6

3
6
.1

3
5
.7

3
3
.6

3
5
.7

3
1
.5

3
5
.7

3
5
.7

3
3
.6

3
3
.6

3
1
.5

3
5
.7

c
p
u

5
2
0
9

2
8
.0

2
8
.2

2
7
.6

2
7
.0

2
7
.9

2
5
.2

2
7
.5

2
3
.4

2
2
.2

2
5
.8

2
4
.4

2
9
.2

2
1
.6

2
0
.7

2
6
.2

2
5
.9

2
9
.2

2
1
.0

2
0
.1

2
5
.5

h
o
u
se

8
5
0
6

1
4
2
.6

1
4
5
.9

1
3
5
.5

1
3
4
.9

1
4
2
.1

1
3
2
.8

1
4
6
.6

1
1
4
.6

1
1
2
.4

1
3
4
.1

1
3
1
.1

1
5
0
.1

1
1
0
.0

1
0
7
.0

1
3
5
.5

1
3
5
.4

1
3
4
.5

1
0
3
.8

1
0
6
.7

1
3
5
.4

18

an improvement of 4%, 9%, 10%, and 16% for the medium instances, of 12%, 17%, 17%, and 11% for the
large ones, and of 4%, 9%, 10%, and 16% on the UCI datasets. When considering all the datasets and all
the values of k jointly, the improvement is of 12%. Although still substantial, this value is not as large as
that for 4S-CR, thus highlighting the relevance of the criterion based on critical points that is adopted in the
Point Partition step. At the same time, it also shows that, even without the criterion, the central idea of
4S-CR (i.e., considering the domain partition aspect of the problem directly at each iteration, rather than
deferring it to a final phase) has a large positive impact on the solution quality.

Most interestingly, the results for STD-CR are quite poor. When considering all the 112 instances (for the
different values of k), the method yields, on geometric average, a 4% larger fitting error w.r.t. STD-CL. This
is not surprising as, by constructing a domain partition only at the very end of the algorithm, the solutions
that are obtained before its derivation typically contain a large number of misclassified points, which yield a
large negative contribution to the final fitting error. Indeed, when comparing the value of the solutions that
are found before and after carrying out the domain partition phase at the end of the method, we register an
increase in fitting error of up to 4 times for both STD-CR and STD-CL. This suggests the lack of a strong
correlation, in both algorithms, between the quality of the solutions found before and after constructing the
final domain partition. Also note that, with the adoption of our criterion for the identification of critical
points, the Point Partition step becomes more time consuming. Indeed, our experiments show that the
average number of iterations carried out in the time limit by STD-CR with respect to those for STD-CL can
be up to 40% smaller (as observed for the large instances with k = 5). Therefore, investing more computing
time in a more refined criterion for the Point Partition step turns out to be not effective for a method
(such as STD-CR) which only considers the domain partition aspect in a second phase.

As to STD-CL-B, we register only a slight improvement w.r.t. STD-CL equal to 2%, on
average, for k = 5. The results are comparable for k = 3, 4 and slightly inferior for k = 2,
where STD-CL-B provides a fitting error 1% larger. Overall, when considering the whole
dataset for all values of k, STD-CL and STD-CL-B are comparable, with the latter providing
an improvement over the former of less that 0.5% on average.

6.6. Generalization with different choices of k

While a thorough evaluation of the accuracy and generalization capabilities of the piecewise affine models
obtained with k-PAMF-PLS lies outside the scope of this work, we carry out a 5-fold cross-validation to
estimate the so-called generalization error, i.e., the fitting error of the models that are found with our
techniques on unseen data.

We compare the results obtained with k-PAMF-PLS on the UCI instances for increasing values of k. As
baseline for comparisons, we also report the results obtained when fitting a single affine model where the
`1-norm error is minimized. We solve this problem as a linear program via CPLEX.

Each data set is randomly split into two parts, with 75% of the data used for training and the remaining
25% used for validation. The training set is used to compute an optimal model for each method, whereas the
remaining points in the validation set are only used a posteriori as unseen data, to evaluate the generalization
error of the model thus found.

Since, due to the size of the instances, solving k-PAMF-PLS with our MILP formulation would be require
too much computing time, we take the best solutions found via our heuristic 4S-CR in 900 seconds.

We construct 5 training/testing splits by sampling the data points at random and solve the two model
fitting problems for each split. For both the training set and the validation set we report, in Table 5), the
`1-norm fitting error divided by the number of data points (the so-called mean absolute error), averaged over
the 5 training/testing splits. We highlight in boldface the best result obtained in the validation phase.

We observe that, as expected, the fitting error over the training sets decreases monotonically for larger
values of k. As to the generalization error on the validation set, the smallest error is obtained for low values
of k, between 2 and 3 while, contrary to the training case, it increases for larger values of k = 4, 5. This
suggest a typical overfitting phenomenon, where models with a small k allow for a better generalization
error on the unseen data due to their low complexity (the so-called Occam’s razor phenomenon). Indeed, a
closer look at the results shows that, using too many affine submodels, may lead to solutions where some

19

Table 5: Mean absolute error of k-PAMF-PLS solutions on the of UCI dataset for k = 1, 2, 3, 4, 5. Five data splits are considered
to generate a training and testing set containing 75% and 25% of the data points. The results are reported on average, with
the best error, for the different values of k, on the training set highlighted in bold for each instance.

k 1 (linear) 2 3 4 4
Train Test Train Test Train Test Train Test Train Test

auto 0.072 0.076 0.059 0.064 0.049 0.059 0.047 0.063 0.041 0.070
breast 0.261 0.279 0.203 0.231 0.131 0.236 0.039 0.082 0.059 0.062

cpu 0.189 0.227 0.109 0.224 0.053 1.066 0.093 0.255 0.181 0.314
house 0.334 0.378 0.204 0.311 0.078 9.155 0.227 0.314 0.173 0.396

of the hyperplanes are used to fit only a small subset of points with a close to zero fitting error (which is
always possible if the number of assigned points is not larger than the dimension of the feature space). Such
solutions typically generalize badly.

7. Application to the identification of hybrid (dynamic) systems

We consider an application of k-PAMF-PLS to the identification of dynamic system of so-called hybrid
type. A dynamic system is said to be hybrid if it exhibits a combination of continuous and discrete behavior.
Such models are also of use in a number of practical cases to approximate the behavior of continuous, but
nonlinear, systems.

Consider a dynamic system with input and output vectors x and y, where (xt, yt) denotes an input-
output pair at time t. Let ϕt be a so-called vector of regressors, defined as the collection of the previous na
inputs and nb outputs, where na and nb define the order of the model. Namely:

ϕt = [yt−1 . . . yt−na
ut−1 . . . ut−nb

].

A dynamic system of the form:
yt = g(ϕt) + et,

where et is a white noise, is called hybrid if g is a piecewise affine function. def. di hybrid e PWARX
cozzano; quel che diamo sopra e’ PWARX. Given input and output vectors u,y, the problem of identifying
a hybrid system that best reproduces the dynamic of the underlying process has been extensively studied in
the system identification literature. We refer the reader to the surveys [? ?] and the references therein, as
well as to the works we cited in Section 2.

As the identification of this type of hybrid systems can be seen as a natural testbed for k-PAMF-PLS, in
this section we well tackle this task resorting to the exact and heuristic approaches that we proposed in the
paper. In particular, we compare our exact formulation to the MILP formulation proposed in [RBL04] for
the identification of piecewise affine model involving hinging hyperplanes (a special class of piecewise affine
models which allows for a conveniently compact representation) and compare the results that we obtain with
our heuristic 4S-CR on a benchmark dataset to recent results illustrated in the literature [?].

7.1. Comparison with a MILP formulation for the identification of Hinging Hyperplane models

Hinging Hyperplane (HH) models, introduced by Breiman in 1993 [?], are piecewise affine models defined
as a sum of so-called hinge functions of the form g(x) = ±max

{
w+x− w+

0 ,w
−x− w−0

}
. A hinge function

is thus the union of two intersecting half-hyperplanes with normal vectors (w+, w+
0) and (w−, w−0) which,

depending on the sign, can be either convex or concave.
Due to their compactness, HH models provide a convenient way to represent a large subclass of piecewise

linear models, and can be effectively used in the identification of hybrid systems, as proposed in [RBL04]. A
key observation is that, after a reparametrization, a HH model composed of h hinge functions can be written
as:

f(x) = w0x− w0
0 +

h∑
j=1

sj max
{
wjx− wj

0, 0
}
,

20

where sj ∈ {−1,+1} represents the sign of the j-th hinge function. This allows for a linearization that leads
to the following MILP formulation of the Hinging Hyperplane Model Fitting (HHMF) problem [RBL04]:

min

m∑
i=1

zi (29)

zi ≥ bi −w0ai + w0
0 −

h∑
j=1

sjβij ∀i ∈ I (30)

zi ≥ −bi + w0ai − w0
0 +

h∑
j=1

sjβij ∀i ∈ I (31)

0 ≤ βij ≤M ijδij ∀i ∈ I, j ∈ J (32)

wjai − wj
0 ≤ βij ∀i ∈ I, j ∈ J (33)

βij +M ij(1− δij) ≤ wjai − wj
0 ∀i ∈ I, j ∈ J (34)

[w1,−w1
0]v ≥ [w1,−wh

0]v ≥ · · · ≥ [w1, wh
0]v (35)

δij ∈ {0, 1} ∀i ∈ I, j ∈ J (36)

zi ≥ 0 ∀i ∈ I (37)

(wj , wj
0) ∈ Rn+1 ∀j ∈ J (38)

Consistently with the notation used throughout this paper, the data points are denoted by (ai, bi) ∈ Rn+1,
while (wj , wj

0) are the variables describing the fitting hyperplanes (in this case, hinging hyperplanes), and
the nonegative variables zi represent the absolute error for each point i ∈ I. The auxiliary variables βij

are introduced to linearize the term max
{
wjx− wj

0, 0
}

via Constraints (32)–(34), where M ij and M ij are

lower and upper bounds on wjai − wj
0. We remark that, in principle, wjai − wj

0 is unbounded. Since the
bounds M ij and M ij are necessary for the linearization though, they should be chosen carefully, lest the
optimality of the solution is invalidated. Constraint (35) is included to break some of the symmetries of the
model, where v ∈ Rn+1 is an arbitrary vector.

Due to their structure, hinging hyperplane models are clearly a restriction of the more general class of
piecewise affine models. Quite conveniently, the subdomains Dj are implicitly induced by the hinge functions
and, therefore, they can be reconstructed analytically a posteriori, if necessary. Note also that, differently
from the models identified via solutions to k-PAMF-PLS, the actual number of affine submodels that will
constitute an optimal solution cannot be determined a priori, as it depends on the mutual arrangements
of the hinges in the solution. For instance, as it is easy to see, an HH model with h = 3 bivariate hinging
functions can contain between 2 and 7 subdomains.

When comparing the formulation for HHMF to that for k-PAMF-PLS, we see that Formulation (29)–
(38) contains O(|I||J |) variables and constraints, while Formulation (4)–(12) O(|I||J |2) constraints E LE
VARIABILI?. The HHMF formulation has a few intrinsic limitations. First of all, we must select in advance
the sign determining the convexity or concavity of each hinging function. Secondly, the formulation does not
allow for discontinuities in the fitted model. Both limitations can be overcome by adding extra variables and
constraints, as also mentioned in [RBL04]. Since, as we observed computationally, the formulation for the
more general case is significantly more challenging to solve, we will restrict ourselves to Formulation (29)–
(38), which is the same used in all the experiments in [RBL04].

To compare HHMF to k-PAMF-PLS, we consider the two most challenging identification instances used
in [RBL04]. For both of them, we impose na = 1, nb = 1. This way, each data point (at, bt) is only defined
in terms of the system inputs and outputs as:

at := [yt−1 ut−1], bt := yt.

BUTTIAM VIA PHI E Y E CHIAMIAMO TUTTO A E B!—fa casino altrimenti

21

7.1.1. Instance 1 (Example 5 in [RBL04])

Let us consider 100 data points, obtained from a system whose output at time t is computed according
to the bivariate HH function:

yt = −0.3 + 1.2yt−1 − ut−1 + max{1.2 + 2ut−1, 0} −max{−0.2yt−1, 0}+ et, (39)

where et is a Gaussian noise with a variance of 0.01. The data points and the original HH function from
which they are sampled are displayed in Figure 5.

x

2.01.51.0 0.50.0 0.5 1.0 1.5 2.0
y

4 3 2 1 0 1 2 3

f(
x
,y

)

6

4

2

0

2

4

6

Figure 5: The HH function in Equation (39) with 100 sampled data points.

Our MILP formulation k-PAMF-PLS is solved in 4.6 seconds for k = 2, yielding a total absolute error of
8.67. Assuming s1 = +1 since, as it can be easily observed in Figure 5, Function (39) is mostly convex, HHMF
is solved in 5.8 seconds with h = 1 hinge function (two affine submodels). Using two affine submodels, the
HH model yields a slightly larger error, 8.805. NON CHIARO! CHE E’? Indeed, the k-PAMF-PLS solution
achieves a better fit by allowing for a discontinuity that cannot be reproduced with the simple HH model.
SERVE PIU’ EVIDENZA PER RENDERE QUESTA ASSERZIONE CONVINCENTE. COSI SEMBRA
UN’ILLAZIONE.

On this instance, k-PAMF-PLS becomes very challenging already for k = 3, with CPLEX failing to find
an optimal solution within the time limit of 3600 seconds. CHE GAP TROVA CPLEX?. Similarly, HHMF
is not solved to optimality for any h > 1, suggesting that the identification of hinging hyperplane models is
a difficult taks even when the sign of the hinge functions is fixed a priori.

7.1.2. Instance 2 (Example 6 in [RBL04])

Let us consider an instance composed of 100 data points, obtained from a system whose output at time
t is defined as the quadratic function:

yt = −0.5y2t−1 + 0.7ut−1 + et, (40)

where et is a Gaussian noise with a variance of 0.01. The data points and the original quadratic function
from which they are sampeld are displayed in Figure 6(a).

For k = 2, k-PAMF-PLS is solved to optimality in 5.2 seconds. With a single concave hinge function
(due to the predominant nonlinear component of the function in Equation (40) being concave), HHMF is
solved to optimality within 2.4 seconds. Interestingly, the two models identified by solving k-PAMF-PLS
and HHMF have the same fitting error of 26.77, and a very similar submodel equations. The model obtained
with k-PAMF-PLS model is reported in Figure 6(b).

Both k-PAMF-PLS and HHMF become significantly harder when solved with more than two submodels.
For k = 3, k-PAMF-PLS is solved to optimality in 1211 seconds, yielding an error of 15.16 while, within a
time limit of one hour, CPLEX fails to solve the formulation for any k larger than 3. The situation is similar

22

(a) (b) (c)

Figure 6: (a)The quadratic function in Equation (40) with 100 sampled data points. (b) The model estimated by solving
k-PAMf-PLS for k = 2. (c) The model estimated by solving k-PAMf-PLS for k = 3.

for HHMF, which for which CPLEX fails to find an optimal solution within a hour for any value of h greater
than 1. The optimal model found by solving k-PAMF-PLS for k = 3 is shown in Figure 6(c).

These experiments show that the MILP formulations for k-PAMF-PLS and HHMF are of comparable
difficulty. Guaranteeing optimality is challenging also for HHMF, despite the formulation being more com-
pact, since the dual bounds of the linear programming relaxations that are solved at each node of the
branch-and-bound tree are, typically, rather weak. NO, NO, NO: perche’ dare un edge a sti stronzi
perche’ ci rompano ancora le balle?! —– We remark that, for k-PAMF, we are employing our
formulation strengthened via symmetry-breaking cutting planes, while for HHMF we simply
feed Formulation (29)–(38) to CPLEX, without exploiting its peculiarities.

7.2. System identification for the a pick-and-place machine model

We now consider a real-world benchmark case study: the pick-and-place machine example adopted in [?
? ?]. The dataset is sampled from a pick-and-place machine used to place electronic components on a circuit
board. It consists of 15 seconds CAMPIONATO A CHE FREQUENZA?—altrimenti detto: QUANTI PTI
SONO? of input (the input voltage of the machine, u) and output (the vertical position of the mounting
head, y). See Figure 7 for a depiction. The physical system has two main modes: the free mode, active when
the head moves freely, and the impact mode, active when the head is in contact with the circuit board.

0

5

10

15

20

25

o
u
tp

u
t

0 100 200 300 400 500 600 700

samples (time)

14
12
10

8
6
4
2

in
p
u
t

Figure 7: Input and output vectors u and y sampled from the pick-and-place machine.

23

For our experiments, we adopt the the same settings as [?]. The data points are sampled at 50 Hz, for
a total of 750 samples. We consider a model of order na = 2, nb = 2, so that the data points (at, bt) are
constructed as follows:

at := [yt−1 yt−2 ut−1 ut−2], bt := yt.

To test the effectiveness of the identification approach and assess its generalization capabilities, we split
the data set in a training and a testing set, using the first 8 seconds (400 points) for training and the
remaining 7 seconds (350 points) for testing. The testing (or validation) phase is carried out by running
a complete simulation of the system with the estimated model and the original input vector u. Note that
task is is significantly more challenging then predicting the output yt at time t given perfect information on
the past (i.e., assuming perfect knowledge of yt−1 and yt−2) as, this way, the simulated output yt will be a
function (of the original input and) of the output at time t − 1 and t − 2 that is obtained via simulation,
employing the identified system. This way, identification errors may propagate over time.

With k = 2 and employing our 4S-CR heuristic (run for 900 seconds), we find a solution with a total
error of 54.3 on the training set. hen simulating the system with the inputs in the validation set, we obtain
the output reported in Figure 8(a). We observe that, visually, this output is very similar to the solution
reported in [?], where the authors solve a convex relaxation of a system identification problem SAY MorE?
that attempts at balancing the fitting error and the number of submodels via a regularization term. The fit
percentage6 of our solution is 81.11%, slightly better than that of value 78.6% which is obtained by Ohlsson
and Ljung.

0

5

10

15

20

25

o
u
tp

u
t

0 50 100 150 200 250 300 350

samples (time)

1
2
3
4

su
b
m

o
d
e
l 0

5

10

15

20

25

o
u
tp

u
t

0 50 100 150 200 250 300 350

samples (time)

1
2
3
4

su
b
m

o
d
e
l

(a) (b)

Figure 8: Simulation results on the pick-and-place machine example with (a) k = 2 and (b) k = 4. The lower panels report the
submodel that is active at each point in time.

If we consider k = 4 submodels, we obtain an objective function of 29.4 on the training set, yielding,
in simulation, the output reported in Figure 8(b), with a 86.35% fit percentage. Even though, by further
increasing the value of k, we obtain a decreased error on the training set, for larger values of k the performance
that we measure by simulating the identified system with validation data does not increse, most likely due
to overfitting. Indeed, while the overall fit percentage with k = 4 is rather good, the results show that the
behavior of the system in the range [75,150] is particularly challenging to reproduce in simulation, as also
observed by Ohlsson and Ljung.

Overall, the experiments suggest that the techniques that we proposed to solve k-PAMF-PLS could
provide a valid alternative to well-established methods of system identification.e

6The fit percentage is a measure of the fitting error computed as 100(1− ‖ysim−ytrue‖
‖ytrue−ȳ‖), where ysim is the vector of simulated

outputs, ytrue is the vector of the original, sampled outputs, and ȳ is the mean of the original, sampled output. See [?] for
more details.

24

8. Concluding remarks

We have addressed the k-PAMF-PLS problem of fitting a piecewise affine model with a piecewise linearly
separable domain partition to a set of data points. We have proposed an MILP formulation to solve the
problem to optimality, strengthened via symmetry breaking constraints. To solve larger instances, we have
developed a four-step heuristic algorithm which simultaneously deals with the various aspects of the problem.
It is based on two key ideas: a criterion for the identification of a set of critical points to be reassigned and
the introduction of a domain partitioning step at each iteration of the method.

Computational experiments on a set of structured randomly generated and real-world instances show
that with our MILP formulation with symmetry breaking constraints we can solve to optimality small-size
instances, while our four-step heuristic provides close-to-optimal solutions for small-size instances and allows
to tackle instances of much larger size. The results not only indicate the high quality of the solutions found
by 4S-CR when compared to those obtained with either an exact method or a standard two-phase heuristic
algorithm, but they also highlight the relevance of the different features of 4S-CR, which must be adopted
in a joint way to yield higher quality solutions to k-PAMF-PLS.

The results obtained with a 5-fold cross-validation on the UCI datasets confirm that low-
complexity models (with a small value of k) can provide solutions that are capable of gen-
eralizing ell on unseen data. From an application point of view, the results obtained with
k-PAMF-PLS when identifying hybrid systems on benchmark data sets from the literature
look promising and of comparable quality as those achieved with well-established system iden-
tification techniques.

References

[AC13] Edoardo Amaldi and Stefano Coniglio. A distance-based point-reassignment heuristic for the
k-hyperplane clustering problem. European Journal of Operational Research, 227(1):22–29,
2013.

[ACT11] E. Amaldi, S. Coniglio, and L. Taccari. Formulations and heuristics for the k-piecewise affine
model fitting problem. In 10th Cologne-Twente Workshop on Graphs and Combinatorial Op-
timization, Rome, Italy, pages 48–51, 2011.

[ACT12] Edoardo Amaldi, Stefano Coniglio, and Leonardo Taccari. k-Piecewise Affine Model Fitting:
heuristics based on multiway linear classification. In 11th Cologne-Twente Workshop on Graphs
and Combinatorial Optimization, Munich, Germany, pages 16–19, 2012.

[AM02] E. Amaldi and M. Mattavelli. The min pfs problem and piecewise linear model estimation.
Discrete Applied Mathematics, 118(1-2):115–143, 2002.

[BM94] K. Bennet and O. Mangasarian. Multicategory discrimination via linear programming. Opti-
mization Methods and Software, 3:27–39, 1994.

[BM00] P. Bradely and O. Mangasarian. k-plane clustering. Journal of Global Optimization, 16:23–32,
2000.

[BS07] D. Bertsimas and R. Shioda. Classification and regression via integer optimization. Operations
Research, 55:252–271, 2007.

[Con11] S. Coniglio. The impact of the norm on the k-hyperplane clustering problem: relaxations,
restrictions, approximation factors, and exact formulations. In 10th , Rome, Italy, pages 118–
121, 2011.

[DF66] R. Duda and H. Fossum. Pattern classification by iteratively determined linear and piecewise
linear discriminant functions. IEEE transactions on electronic computers, 15:220–232, 1966.

25

[FA10] A. Frank and A. Asuncion. UCI machine learning repository, 2010.

[FTMLM03] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. A clustering technique for the
identification of piecewise affine systems. Automatica, 39(2):205–217, 2003.

[Mac67] J. MacQueen. Some methods for classification and analysis of multivariate observations. In
5th , Los Angeles, California, volume 1, pages 281–297. California University Press, 1967.

[Mar10] François Margot. Symmetry in integer linear programming. In 50 Years of Integer Programming
1958-2008, pages 647–686. Springer, 2010.

[MB09] A. Magnani and S. Boyd. Convex piecewise-linear fitting. Optimization and Engineering,
10:1–17, 2009.

[MDZ01] Isabel Méndez Dı́az and Paula Zabala. A polyhedral approach for graph coloring. Electronic
Notes in Discrete Mathematics, 7:178–181, 2001.

[MDZ06] Isabel Méndez-Dı́az and Paula Zabala. A branch-and-cut algorithm for graph coloring. Discrete
Applied Mathematics, 154(5):826–847, 2006.

[MRT05] O. Mangasarian, J. Rosen, and M. Thompson. Global minimization via piecewise-linear un-
derestimation. J. Glob. Optim., 32, 2005.

[RBL04] J. Roll, A. Bemporad, and L. Ljung. Identification of piecewise affine systems via mixed-integer
programming. Automatica, 40:37–50, 2004.

[TPSM06] Mojtaba Tabatabaei-Pour, Karim Salahshoor, and Behzad Moshiri. A modified k-plane clus-
tering algorithm for identification of hybrid systems. In WCICA, The Sixth World Congress
on Intelligent Control and Automation, volume 1, pages 1333–1337. IEEE, 2006.

[TV12] Alejandro Toriello and Juan Pablo Vielma. Fitting piecewise linear continuous functions. Eu-
ropean Journal of Operational Research, 219(1):86–95, 2012.

[Vap96] V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1996.

26

