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Abstract

In several practical supervised learning problems where
we have a large amount of data from distributed cameras or
sensors, we can use domain knowledge to identify subsets of
unlabeled examples with the same (unknown) label. Under
this assumption, we propose a straightforward way to ex-
ploit label invariance in unlabeled data within a domain-
aware semi-supervised learning framework (DSSL). Our
approach exploits such invariance to generate higher qual-
ity pseudolabels to be used in a consistency loss term.

We report experiments and ablation studies on three
practical cases on data from real-world fleets of connected
vehicles that naturally exhibit the required assumption: an
image classification problem, a semantic segmentation task,
and a time series classification one. We show that our ap-
proach is extremely effective, especially when few labeled
samples are available, and can be easily adapted to tasks of
different nature.

1. Introduction

In several real-world tasks commonly solved with super-
vised learning, collecting a large dataset of annotations is
too costly, time-consuming, or simply infeasible, while a
vast amount of unlabeled data is often available. In the
last few years, a large number of methods have been pro-
posed that carried to a renewed interest in self- and semi-
supervised learning.

While these methods have obtained great success, they
are often rather complex and brittle. We argue that, even in
unsupervised data, there often are properties obtained from
knowledge of the domain or the data generation process that
one can directly exploit to make similar semi-supervised
techniques more effective.

In this article we show a way to do so for the case of
networks of sensors or cameras installed on moving vehi-
cles: we propose a simple and practical domain-aware semi-
supervised method, that leverages known invariants in unla-

beled data, bringing about a significant increase in accuracy
with minimal implementation effort. The idea is to exploit
the existence of equivalence classes in unlabeled data where
the target label (albeit unknown) is invariant. For example,
this would be possible in situations where we can obtain
multiple images of the same object from different point of
views, or from different moments in time. This would al-
low us to naturally have multiple views of the same sample,
rather than relying only on artificial data augmentations.

The proposed approach can be applied on a vast array of
tasks that exhibit some fairly common assumptions in real-
world scenarios where we have a network of distributed sen-
sors that generate data. We show how the idea can be eas-
ily applied in practice on three applications, with a simple
setup where we employ standard training procedures with
no bells and whistles. In the first task, weather classifica-
tion from videos, we exploit temporal consistency in single
video clips; in the other two examples, ego-vehicle segmen-
tation and vehicle type classification, we exploit the consis-
tency of the target across different examples obtained from
the same camera or sensor.

2. Related work

Semi-supervised learning refers to techniques that at-
tempt to use jointly labeled and unlabeled data for learn-
ing [3]. In the last few years, a large number of new meth-
ods have been proposed that apply semi-supervised learn-
ing to neural networks. Recent approaches typically rely
on some flavor of self-training, where a model produces
artificial labels (pseudolabels) used to train itself: for in-
stance, Temporal Ensembling [10] uses predictions aver-
aged across different epochs to produce better artificial tar-
gets; similarly, MeanTeacher [21] uses and exponential av-
erage of the model weights to refine pseudolabels. Other
works [28, 15, 4] use a separate teacher network to produce
labels used for a student model.

Among the most successful approaches, let us briefly
highlight approaches that bear most similarities with ours,
based on the assumption that a model should output simi-



lar predictions on differently perturbed versions of the same
example. UDA [27] introduces a set of advanced augmenta-
tion strategies that are used to produce predictions over dif-
ferent versions of the same image. Then, a divergence met-
ric between the two distributions (perturbed vs unperturbed)
is minimized. MixMatch [2] aggregates predictions on K
differently transformed version of an image to obtain an ar-
tificial label. Labeled and pseudolabeled samples are then
combined via mixup [30]. In FixMatch [18], the authors use
an even simpler combination of pseudolabeling and con-
sistency regularization. Pseudolabels are obtained thresh-
olding predictions on weakly augmented data, and then are
used in a loss against the prediction obtained from a heavily
augmented view of the same input. In all these methods the
choice of augmentations is crucial for their effectiveness, as
remarked in [27, 2]. In Meta Pseudo Labels [15], a teacher
network is used to generate pseudolabels to teach a student
network. The teacher is constantly adapted by the feedback
of the student’s performance on the labeled dataset.

Semi-supervised techniques that, similar to what we pro-
pose, attempt to exploit specific invariants from the domain
or the data at hand have also been proposed in the past. A
line of research has explored the use of temporal coeher-
ence to help learning in an unsupervised or semi-supervised
manner, see [14, 13]. In [26], the authors exploit spatial and
temporal consistency as loss regularization terms to develop
a semi-supervised method for pedestrian counting. In [12],
the authors use domain knowledge on specific relations be-
tween different examples. They propose a technique that at-
tempts to enforce consistency of such relations, rather than
of the unknown label. The method we propose is also simi-
lar in spirit to [1], where the authors exploit geographical in-
variance in the data in a self-supervised framework, and [8]
where the authors exploit the knowledge that images from
different medical sensors are aligned.

3. Domain-aware Semi-Supervised Learning
Let us consider a supervised learning problem, with a set

Xs = {(xi, yi)} of labeled pairs, where xi ∈ X is the i-
th training example and yi is the i-th target or label. Let
f(· ; θ) : X → Y the prediction function of our current
model parametrized by the weights θ.

Let U ⊂ X be a set of unlabeled examples. Let ∼ be
an equivalence relation, that can be derived from domain
knowledge, which is known to be label-consistent.

Definition 1. A relation ∼ over U is said to be label-
consistent if for each pair u, v ∈ U , u ∼ v =⇒ g(u) =
g(v), where g : X → Y is the function that maps each
example to its ground truth label.

In other words, ∼ induces a partitioning of U into equiv-
alence classes Gj ⊂ U that have homogeneous (albeit un-
known) label. As an example, assume we have clips con-

taining footage of a single animal each. If our task entails
learning to classify animals in an image, we can exploit the
domain knowledge that two frames a, b belonging to the
same video (a ∼ b) are going to belong to the same cat-
egory (g(a) = g(b)).

In Domain-aware Semi-Supervised Learning (DSSL),
we leverage the knowledge of a label-consistent relation ∼
over our unlabeled data, arising naturally from the data col-
lection or generation process in the context of network of
distributed sensors. Knowing that we can partition unla-
beled data in groups of examples with the same (unknown)
label allows us to:

• use different data points in the same label-consistent
group effectively as different views of the same sample
(i.e., multiple views across time), reducing the need of
finding the correct mix/recipe of data augmentation for
the task at hand;

• improve the quality of the pseudolabels aggregating
predictions from multiple examples within a group;

• use the same high-quality pseudolabel for multiple ex-
amples within the same group;

• measure the quality of the pseudolabel of a group.

In DSSL, we construct a loss function as the sum of two
terms: a standard supervised loss Ls, applied to labeled
data, and an unsupervised one, Lu, which is a sort of consis-
tency loss computed with pseudolabels obtained from unla-
beled data. The two loss terms are combined with a weight
term:

L = Ls + λuLu. (1)

In order to compute the unsupervised loss term (see Fig-
ure 1), at each iteration we consider Bu groups of examples
that are equivalent under the relation ∼. Our assumption is
that a model should output similar predictions on all exam-
ples in the same group. For each group Gj , j ∈ 1, . . . , Bu,
we aggregate the model output computed over the examples
in Gj to obtain a single pseudolabel ỹj and a pseudolabel
score σj :

ỹj , σj = agg({f(u; θ) : u ∈ Gj}) (2)

In practice, a pseudolabel will typically not be computed
on all examples in Gj , that might be infinitely many, but
only using a subset U ′ ⊂ Gj of cardinality K ′. Finally,
if the score σj is greater or equal than a quality threshold
τ , the resulting pseudolabel ỹj will be used to compute a
loss against K ′′ other examples U ′′ ⊂ Gj , on which one
can also apply a stochastic augmentation function α(·). The
total unsupervised loss term Lu is obtained summing up the
terms Lju for all groups j ∈ 1, . . . , Bu.

A summary of the batch update of DSSL can be found in
Algorithm 1. It is worth noting that DSSL can also be seen
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Figure 1. Domain-aware Semi-supervised Learning. Given a group Gj of unlabeled examples, known to belong to the same target class,
DSSL builds a high-quality pseudolabel ỹj aggregating the output of multiple samples U ′ sampled from Gj . Then, the resulting pseudola-
bel is used as a target to compute the loss Lj

u over another set of examples U ′′ ⊂ Gj that potentially underwent a data augmentation α.
(Picture adapted from a photographic study by Eadweard Muybridge.)

as an extension/modification of existing methods based on
self-consistency: if we take U ′ = U ′′ with size 1, DSSL
essentially reduces to the core idea of FixMatch [18], while
the idea of aggregating K different predictions to produce a
pseudolabel was used, among others, in [27, 2].

4. Experiments
We provide a set of experiments on three real-world tasks

in the context of connected vehicles, where we show how
the use of our approach leads to a significant performance
improvement.

4.1. Image classification: weather condition

The BDD100K dataset1 [29] includes thousands of 40-
second videos recorded by dashcams around the US. In each
video a single frame is annotated with a label related to
the weather condition of the image: Clear, Partly Cloudy,
Overcast, Rainy, Snowy. Assuming that it is highly unlikely
that weather conditions would change during a short time

1BDD100K is freely available at https://bdd-data.
berkeley.edu/ for educational, research, and not-for-profit pur-
poses.

span, each video can be seen as a label-consistent group of
images, sharing the same (unknown) label. Examples can
be seen in Fig. 2.

Figure 2. Pairs of frames from the same BDD100K video. The
two images on top are extracted from a rainy night video (notice
the wet road); the images on the bottom are extracted from a clear
video.

For our experiments, similarly to common semi-
supervised learning (SSL) benchmarks, we build a num-

https://bdd-data.berkeley.edu/
https://bdd-data.berkeley.edu/


Algorithm 1. Batch update for Domain-aware Self-Supervised Learning
Labeled data: Bs pairs of example xi and corresponding target yi
Unlabeled data: Bu groups Gj ⊂ U , where each group contains unlabeled examples ujk ∈ Gj with consistent (yet
unknown) target
for j = 1, . . . , Bu do

Sample a subset of examples U ′ ⊂ Gj of cardinality K ′

Compute candidate pseudolabel and score as: ỹj , σj = agg({f(u; θ) : u ∈ U ′})
where agg(·) is an aggregation function over the set of predictions computed on U ′.
if σj ≥ τ then

Sample a subset of examples U ′′ ∈ Gj of cardinality K ′′

Compute loss for group j as: Lju = 1
n′′
u

∑
u∈U ′′ H(f(α(u); θ), ỹj)

where α is a stochastic augmentation function and H is the loss for a single example.
end if

end for
Compute supervised loss as: Ls = 1

Bs

∑Bs

i=1H(f(α(xi); θ), yi)

Return total batch loss: L = Ls + λu

Bu

∑Bu

j=1 Lju

ber of datasets in a hierarchical way, with increasing
number of labeled examples. We indicate each of these
training datasets as BDD-Weather-[N], where N ∈
{250, 500, 1000, 2500} is the number of total annotated im-
ages. For the unsupervised part, we use unlabeled videos as
label-consistent groups from which we extract frames that
are 4 seconds apart, to ensure images in the same group are
not too similar. We keep a separate validation set, with 500
examples per class, and train and test at 320× 180.

Our model consists of an EfficientNet-B1 [20] architec-
ture trained with Cross-Entropy Loss and Adam [9] as opti-
mizer. The problem is balanced, so we use accuracy to mea-
sure the performance of the approaches. For DSSL, we use
Bu = 8 groups of size 4 both for pseudolabel aggregation
(U ′) and consistency loss (U ′′). As aggregation function,
we average the predictions over U ′ and take their argmax
(hard pseudolabel). The score σj is computed as the maxi-
mum confidence after the averaging.

In Figure 3 and Table 1 we show the results we obtain
compared to a purely supervised training and an SSL base-
line. Our baseline SSL is a barebone implementation of
FixMatch with RandAugment (RA): we implement the core
idea of FixMatch, self-training with consistency regulariza-
tion using RA, but we do not employ the full arsenal of
tricks employed in the original article. On the contrary, for
all the methods in this experiment we use the same simple
setup and standard choices for optimizer (Adam) and hyper-
parameters, allowing for our experiments to run on a single
GPU Nvidia P100.

DSSL significantly outperforms the supervised training
counterpart, especially in scarce-data regime, where it is
much more label efficient. DSSL accuracy is often better
than a supervised training with twice the amount of anno-
tations – as an example, with 500 labeled examples, DSSL

BDD-Weather
Num. labels 250 500 1000 2500

Supervised 64.9 68.2 72.3 75.9
SSL baseline 68.1 71.1 75.5 77.3
DSSL 69.0 73.0 76.0 78.4

Table 1. DSSL vs supervised and semi-supervised baselines.

yields an accuracy of 73.0, compared to 72.3 obtained for
N = 1000 with supervised training.

The SSL baseline, in all its simplicity, is very effective:
this is a testament to the quality of the core idea of Fix-
Match. Yet, exploiting knowledge of label-invariance in the
domain, DSSL outperforms it in all cases.
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Figure 3. Performance of DSSL vs baselines on BDD-Weather
with different amount of labeled data. Average over 5 runs.

We perform an ablation study on BDD-Weather-500
modifying DSSL in two ways. In Table 4 we consider the



case where we change the augmentation policy. Replac-
ing the aggressive RandAugment policy with weaker aug-
mentation strategies causes a drop for both DSSL and the
baselines. However, it is interesting to note that the SSL
baseline, that relies heavily on the quality of the augmenta-
tion strategy for the consistency loss, suffers a greater drop.
In the case were we completely remove the augmentation,
the SSL baseline collapses (-7.3), with self-training becom-
ing detrimental. DSSL is still rather effective even with no
augmentation at all, outperforming the supervised baseline
by more than 5 points. This suggests that, when applicable,
DSSL might be significantly easier to use effectively than
other available semi-supervised and self-supervised learn-
ing approaches.

In Table 5 we show the effect of changing the group size
used in DSSL. Group size is probably the single param-
eter with most impact on the effectiveness. The topmost
results show that groups are useful both when generating
pseudolabels (U ′), than when computing the loss from dif-
ferent views (U ′′). The table at the bottom suggest that,
while larger groups should provide better quality pseudola-
bels, using a rather small number of items from each group
seems ideal: we argue that the lower diversity contained in
a batch might have an adverse effect. In addition, larger
groups are also less practical, as they slow down the com-
putation for marginal improvements.

Bu K′, K′′ Augmentation Accuracy

DSSL 8 (4, 4) RandAugment 73.0
SSL baseline 32 - RandAugment 71.1
Supervised - - RandAugment 68.2

DSSL 8 (4, 4) Weak 70.9 (-2.1)
SSL baseline 32 - Weak 68.2 (-2.9)
Supervised - - Weak 66.1 (-2.1)

DSSL 8 (4, 4) None 70.0 (-3.0)
SSL baseline 32 - None 63.8 (-7.3)
Supervised - - None 64.6 (-3.6)

Figure 4. Impact of augmentation strategy. DSSL is still rather
effective even using no artificial augmentation at all, while the SSL
baseline collapses.

4.2. Ego-vehicle semantic segmentation

As a second practical use case, we consider a seman-
tic segmentation task: the detection of the ego-vehicle in
video frames. Footage captured by dashcams, as BDD100K
or Cityscapes [6], often contains a visible part of the ego-
vehicle. This can be an issue for any downstream task, as
mentioned also in [4]. Then, a common preliminary step
entails the identification of the ego-vehicle within a frame.

If we have different images captured from the same ve-
hicle over time, one can safely assume that the mounting
position of the camera is constant, and as such, the portion

K′ K′′ Accuracy

DSSL 4 4 73.0
4 1 72.4
1 4 71.7
1 1 70.9

DSSL 10 10 71.8
8 8 72.4
4 4 73.0
1 1 70.9

Figure 5. Impact of group size for DSSL. Reducing the group size
is detrimental both for U ′ and U ′′.

of visible ego-vehicle is going to be the same in all captured
frames. We can take different frames from the same camera
as a label-consistent group of examples.

We use a private dataset of images collected from dash-
cams installed on a large fleet of vehicles in the US. Vehi-
cles in the dataset are heterogeneous, ranging from passen-
ger cars to heavy-duty trucks, and there is a great variabil-
ity in terms of camera position, weather and lighting condi-
tions (see Figure 6 for some examples). We labeled a set of
2000 images, from which we extract smaller nested datasets
of size N = {100, 200, 400, 1000, 2000}. In addition, we
have a set of more than 70k unlabeled images, gathered by
7k vehicles that were not already in the annotated dataset.

Figure 6. Images with visible ego-vehicle and example of ground
truth mask. The dataset contains a large variety of vehicle types,
mounting positions, and lighting conditions.

We choose a model commonly used for segmentation,
U-Net [16], with an EfficientNet-B0 [20] backbone. We
optimize the Dice loss [19] with Adam and we evaluate
the results in validation and test computing the Intersection
over Union (IoU) between the prediction and the ground
truth mask. We use a custom set of data augmentations.
For DSSL, we use batches with Bu = 5 unlabeled groups.
For each group, we take U ′ of size 4 for pseudolabel gen-
eration, and U ′′ of size 4 to compute the consistency loss.
As pseudolabel aggregation function, we compute the pix-
elwise mean of the predictions over U ′ to produce the can-



didate mask. The score σj is computed as the average pix-
elwise standard deviation over the predictions; in this case,
we keep a pseudolabel if the score is below the threshold
τ = 0.05, indicating that the variance of the predictions in
the group U ′ is small.

We report the results compared to a supervised and SSL
baseline in Figure 7 and Table 2. DSSL is extremely effec-
tive leveraging annotated data in this task. With only 200
labeled examples, our approach outperforms a standard su-
pervised training that uses the entire dataset. When both
DSSL and the supervised training use the entire dataset,
DSSL reaches a IoU of 90.6, while the supervised baseline
only scores 85.9. The simple SSL baseline appears to fail
on this task, suggesting that the custom augmentation we
used, though aggressive, are not sufficient.
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Figure 7. DSSL on ego-vehicle segmentation with different
amount of labeled data. Average of 5 runs.

Ego-vehicle segmentation

Num. labels 100 200 400 1000 2000

Supervised 77.4 81.1 83.2 83.73 85.9
SSL baseline 76.4 78.1 83.3 84.02 87.6
DSSL 85.2 88.3 89.4 89.24 90.6

Table 2. DSSL vs supervised and SSL baselines. Average over 5
runs.

4.3. Vehicle type classification

As our third use case, let us consider a time series clas-
sification problem on data collected by navigation sensors
(accelerometer, gyroscope, and GPS) from a large fleet of
connected vehicles in the US. Given sensor data from a de-
vice mounted on a vehicle, a question that may arise is iden-
tifying the category of the vehicle from the dynamics cap-
tured in the data (see, e.g., [24, 17]). We specifically focus
on the problem of classifying vehicles into one of 9 fine-
grained GVWR (gross vehicle weight rating) classes, rang-

ing from light-duty to heavy-duty trucks, and an additional
class for passenger cars, for a total of 10 classes.

The classes are described in Table 3. We employ a
fine-grained classification obtained merging a few common
ones [25, 23], which is mainly based on the allowed weight
limit.

Class Duty classification Weight limit

0 Cars -
1 Light trucks < 6,000 lbs
2a Light trucks 6,001–8,500 lbs.
2b Light/medium trucks 8,501–10,000 lbs.
3 Medium trucks 10,001–14,000 lbs.
4 Medium trucks 14,001–16,000 lbs.
5 Medium trucks 16,001–19,500 lbs.
6 Medium trucks 19,501–26,000 lbs.
7 Heavy trucks 26,001–33,000 lbs.
8 Heavy trucks ≥ 33, 001 lbs.

Table 3. Vehicle classes

The labels for our training and validation sets were ob-
tained from the make and model, that was available for a
small subset of the available data. For the rest of the data,
no information is available other than an ID that uniquely
identifies the vehicle. The assumption of DSSL are trivially
satisfied: in unlabeled data, we know that all samples that
are collected from the same vehicle clearly belong to the
same target class.

Our dataset contains short segments (15 seconds) of tem-
porally aligned sensor data x = {a(t), g(t), v(t)}: accelera-
tion @100Hz from a tri-axial accelerometer, angular speed
@100Hz from a gyroscope, and speed from GPS @1Hz.
The training set contains 8000 labeled samples with one of
the 10 classes, while we keep and held-out validation of
4000 samples. In addition, we have a set of over 50,000 un-
labeled samples that are grouped based on the vehicle that
generated it (whose class is unknown).

We use a simple custom architecture based on a CNN
backbone followed by a layer of stacked Gated Recurrent
Units (GRU [5]). We use Adam as optimizer, and DSSL
with unlabeled batch size Bu = 32, K ′ = 4 and K ′′ = 4.

In this domain, there is clearly not the same number
of well-studied artificial augmentations and policies as for
image-related tasks. Moreover, it is not trivial to understand
what kind of operations might affect the semantics of a sig-
nal: the input has three modalities (acceleration, angular
speed, linear speed) that are correlated, but come from dif-
ferent sensors and have different sampling rates. In our ex-
periments we use a custom set of transformations, inspired
by those mentioned in [11, 22], that include axial rotations,
additive noise, several kinds of filtering, warping, and cut-
out of parts of the signal.

The results in Table 4 confirm that DSSL works very ef-



fectively compared both to the supervised and SSL baseline.
The SSL baseline would likely need a more specific training
procedure and augmentation strategy to work satisfactorily,
while DSSL shows again that it is not too sensitive to the
specific augmentation recipe, model architecture or training
procedure, working essentially out of the box. This makes
the core idea of DSSL especially suitable to be adapted to
different domains, that might lack the broad set of estab-
lished techniques developed for images.
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Figure 8. DSSL on the vehicle type classification problem with
different amount of annotated data. Average of 5 runs.

Vehicle type classification

Num. labels 2000 4000 6000 8000

Supervised 45.5 57.5 63.9 65.6
SSL baseline 45.6 57.7 64.6 67.5
DSSL 54.4 67.3 69.5 71.9

Table 4. DSSL vs supervised and semi-supervised baselines. Av-
erage of 5 runs.

5. Conclusion
In this work, we proposed a straightforward technique

to exploit invariances based on domain knowledge in the
context of cameras and sensors installed on connected ve-
hicles. More specifically, we leverage the fact that we can
easily identify groups of unlabeled examples with the same
(unknown) label. This helps in devising a semi-supervised
method (DSSL) that obtains high-quality aggregated pseu-
dolabels, and uses different examples in the same group (for
example, frames from the same camera) as differently per-
turbed versions with the same label, reducing the need of
aggressive artificial augmentations.

We showed how DSSL can work in a very straightfor-
ward way on three real-world tasks, including a time se-
ries classification task on sensor data. In all three cases,
DSSL significantly outperforms both a purely supervised

counterpart and a baseline SSL method, that appears to be
significantly more brittle. In an ablation study, we show that
DSSL can even work with no artificial data augmentation at
all. This suggests that in practical settings, cleverly using all
the available domain knowledge could be much more effec-
tive than relying on more sophisticated methods, especially
in domains other than images, that might not have the same
abundance of specialized techniques.

We believe that there might be several other cases that
could benefit from our approach. As an example, another
kind of domain knowledge that could be readily used in the
context of distributed cameras is the GPS location, which
is typically known for each example. In several tasks (e.g.,
see [7]), a cluster of frames that are geographically close
would be associated with the same ground truth label, thus
DSSL could be easily applied.

A potential future avenue for research might be the inte-
gration of this kind of domain-based invariants into a self-
supervised learning method, where, rather than minimiz-
ing the discrepancy between artificially perturbed versions
of the same example, one would minimize dissimilarity
between different examples belonging to the same group.
More in general, we believe that there is ample potential for
exploration of simple and practical algorithms that cleverly
exploit domain knowledge to reach and even surpass state-
of-the-art performance of more general approaches.
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