
Noname manuscript No.
(will be inserted by the editor)

Exploiting sets of independent moves in VRP

Tommaso Bianconcini · David Di
Lorenzo · Alessandro Lori · Fabio
Schoen · Leonardo Taccari

Received: date / Accepted: date

Abstract Most heuristic methods for VRP and its variants are based on the
partial exploration of large neighborhoods, typically by means of single, sim-
ple moves applied to the current solution. In this paper we define an extended
concept of independent moves and show how even a very standard heuristic
method can significantly improve when considering the simultaneous appli-
cation of carefully chosen sets of moves. We show in particular that, when
choosing a set such that the total cost variation is equal to the sum of the
variations induced by each single move, the quality of solutions obtained is in
general very high. When compared with numerical results obtained by some
of the best available heuristics on challenging, large scale, problems, our sim-
ple algorithm equipped with the application of optimally chosen independent
moves displayed very good quality.

Keywords VRP · tabu search · matheuristic · independent moves

Introduction

Most heuristic approaches for capacitated vehicle routing problems (VRPs)
are based on a clever exploration of suitably defined neighborhoods of one

T. Bianconcini
tommaso.bianconcini@fleetmatics.com

D. Di Lorenzo
E-mail: david.dilorenzo@fleetmatics.com

A. Lori
E-mail: alessandro.lori@fleetmatics.com

L. Taccari
E-mail: leonardo.taccari@fleetmatics.com

F. Schoen
DINFO - University of Florence E-mail: fabio.schoen@unifi.it

2

(or several, in population-based methods) current solution. It is well known
that the behavior of most successful heuristics is strongly influenced by the
quality of the neighborhood definition and by the capability to perform a good
neighborhood exploration. Much research has been devoted to efficient ways
to explore very large scale neighborhoods, sometimes with the aim of trying
not to waste precious CPU time by re-evaluating the effect of the same move
more than once: this has been achieved mainly through the use of some kind
of caching mechanism. Although caching is very relevant in practice, as it
significantly cuts the total CPU time devoted to neighborhood exploration, in
most cases large neighborhoods are explored with the aim of selecting a single
“best” move to be applied.

Our approach is based on the idea of being able to select, at each step of
an algorithm, a set of moves which can be simultaneously applied to the cur-
rent solution. The benefits expected by the approach proposed in this paper
are at least two: on one hand, in this way we are performing an exploration
which profits of advantages similar to those obtained by caching, but without
requiring a caching mechanism to be implemented. On the other hand, and
in our opinion more relevantly, the simultaneous application of several moves
generates a less greedy move acceptance criterion, in which the single most
improving move might not be applied, in favor of the application of several,
less profitable moves which, together, perturb the solution in a more signifi-
cant way. In fact, it is easy to observe that the usual strategy of selecting a
single most improving move at each iteration of a heuristic method sometimes
changes the current solution in such a way that other moves, with comparable
impact on the quality of the solution, cannot be anymore applied as a conse-
quence of a change in current routes. The next figure illustrates, through an
artificial example, the basic idea.

a b c d
∆ = −8 ∆ = −10 ∆ = −5

In this figure the labels over each edge represent the total cost variation in
a VRP solution obtained by removing that edge and suitably modifying a
different portion of the VRP solution in order to obtain a feasible solution.
If a standard local search algorithm is employed, the move to be chosen is to
remove edge {b, c}, as this gives the largest improvement. However, by doing so,
in the following stage of the algorithm, edges {a, b} and {c, d} might no longer
be part of the solution. On the contrary, a move which removes simultaneously
(if feasible) both edge {a, b} and edge {c, d} yields a total improvement which
is significantly higher. In order to be able to design a method which takes an
idea of this kind into a practical method, a careful definition of sets of moves
which can be simultaneously applied is required, as well as a set of rules for
deducing the overall improvement – in this trivial example we assumed that
the improvements due to each single move were additive.

Our idea in this paper is that, through the use of state of the art mathe-
matical programming solvers, the choice of a whole set of moves which globally
improve as much as possible the current solution is very beneficial in terms of

3

the quality of the resulting routes. We choose one of the most basic and widely
studied models, the Vehicle Routing Problem with capacity constraints, and
implement a very standard tabu search algorithm. Our objective is to show
that even for the most basic VRP model, studied by a large community with a
huge number of existing computational approaches, and using an elementary
heuristic method, enlarging the set of moves to be applied at each iteration
significantly improves the effectiveness of the method. Indeed, our experimen-
tation on a large test set of medium / large sized instances shows that the
idea of simultaneous moves can bring a standard VRP method to the quality
of much more refined and complex algorithms.

The main contribution in this paper consists in a definition of the concept
of independent moves, which is crucial in order to be able to select sets of
moves which can be applied simultaneously and which guarantee an overall
cost variation which is easily computed. Given the general definition, we for-
mally define a set of standard moves, very common in VRP heuristics, and
show the conditions which guarantee that these moves are indeed independent.
The selection of the best set of independent moves to be applied to the current
solution is then delegated to a Mixed Integer Programming (MIP) algorithm.
Extensive computational experiments carried out the 100 instances from the
new test set described in [23] confirm that even a simple implementation of a
basic local search heuristic method can be significantly improved by means of
the simultaneous selection of independent moves, to the point that for most
of the instances the resulting method stops within a few percent points from
the putative optimum.

The paper is organized as follows. Some relevant papers are briefly dis-
cussed in Section 1. Section 2 introduces the notion of independent moves,
which forms the basis for the definition of the algorithm in Section 3. Numer-
ical results are analyzed in Section 4, and conclusions are drawn in Section 5.
Theoretical properties used in Section 2 are proved in Appendix A.

1 Review of the literature

The literature on VRP is very large and it is out of scope to review it here
– for a general reference on the subject the interested reader might consult,
e.g., [22]. In this section we would like to mention just those approaches which
are more closely related to the one proposed in this paper, namely, heuristic
approaches that leverage MIP algorithms as well as those in which exponential-
size neighborhoods are efficiently explored by other means.

In recent years several authors have proposed to include MIP models within
heuristic algorithms in order to exploit the computational efficiency of modern
MIP codes and improve the quality of local search methods. These approaches
are usually denoted by the term matheuristic. Recent approaches include, e.g.,
[2,7,15,20,21]. Several of them use MIP as a tool to reconstruct solutions after
a destroy operation, while others employ techniques like local branching to
build and explore MIP-defined neighborhoods. To the best of our knowledge,

4

the most widely used approach based on mixing MIP and heuristics for VRP
is the selection of suitable routes by means of the solution of a set-covering or
partitioning model. In practice, in any local search based method, a number
of routes is generated which might be combined a posteriori via a set covering
model. This idea, first introduced in [9] and used, among others, in [11,18],
is indeed interesting and, while it is not the core of our algorithm, it has also
been used in this paper to get some minor improvement at the end of the
algorithm, as we will further explain later.

Approaches for the exploration of exponential-size neighborhoods for com-
binatorial problems that do not employ MIP algorithms have also been widely
studied. In such methods, the large-scale neighborhoods are built in such a
way as to allow a polynomial algorithm to explore them. An example is the
dynasearch algorithm proposed for a machine scheduling problem and the
TSP in [4,16], which is based on combinations of mutually independent basic
moves, where the optimal sequence of search steps is selected via dynamic
programming.

On the other hand, the literature on methods focused, more specifically,
on the selection of generic subsets of simple, standard VRP moves is quite
scarce. A notable example in this category is [8]. In this paper a definition of
independence among a small set of moves is considered in order to be able to
select a bunch of improving moves simultaneously, in the same spirit of what
we are proposing here. The idea of the authors was to restrict so much the set
of moves which can be applied simultaneously, to be able to cast the optimal
selection of moves as a constrained shortest path problem in a directed graph.
This way, they can use a label setting algorithm as a fast heuristic. This selec-
tion tool is quite limited in the set of candidate moves considered, compared
to what we propose here. In fact, they define compounded neighborhoods for
the VRP only for two of the six operators we consider (namely, swap and in-
sertion); their definition of independence is also more restrictive, as it forbids
pairs of moves that we consider as independent (such as intertwined swaps);
moreover, they allow for inter–route selection of independent moves by con-
catenating different routes into a single one, thus imposing an arbitrary order,
and by setting an arbitrary orientation of the orders within each route.

Our aim in this paper is to greatly enlarge the set of moves, both feasi-
ble as well as infeasible, among which to choose those to be applied. With
respect to [8] thus we expand the types of moves considered introducing a
broader definition of independence, we allow the simultaneous choice of moves
of different types, we allow the selection of moves in any route, and overall we
greatly expand the number of moves considered; of course this enlargement
in the type and number of moves to be considered requires the use of a MIP
solver, instead of a much simpler shortest path algorithm.

Another recent example is [17] where the idea of choosing a set of indepen-
dent moves to be simultaneously applied is studied with the aim of proposing
a highly parallel, GPU–based, implementation. At each iteration a subset of
independent moves is extracted by means of a heuristic procedure and then
all these moves are applied simultaneously within an Iterated Local Search

5

algorithm. The framework is similar to the one proposed here, but with a
very limited set of move types and it is focused on the TSP context, in which
capacity constraints are not considered.

2 Independent moves for VRP problems

The problem considered in this paper is the capacitated VRP with symmetric
costs and a unique depot. Although here we are restricting our attention to one
of the most basic VRP models, many concepts and properties can be extended
to more general cases.

Let G = (V,E) be an undirected, complete, graph where V is the set of
nodes, i.e., a set of orders to be satisfied, plus a depot which we consider to
be unique. E is the complete set of (undirected) edges, with symmetric costs
cij ≥ 0 ∀ i, j ∈ V . Formally, we identify a (VRP) solution s by the set of
its selected edges Es ⊂ E. We assume that a set of R vehicles is given, each
with an associated capacity Q. To each node (order) v ∈ V a positive load
(demand) dv is associated.

Definition 1 A solution is well-formed if all orders (except the depot) have
degree 2, and if each cycle (or tour) in the solution contains the depot node.

In the above definition, each cycle corresponds to a route. A well-formed so-
lution is feasible if all the routes also satisfy the capacity constraints, i.e., the
sum of loads of the orders in each route is not greater then Q. For the stan-
dard capacitated VRP problem we are facing, we look for a least cost feasible
solution with R vehicles, noting that a vehicle can also be assigned an empty
route.

In what follows, let us discard, for the moment, vehicle capacity constraints,
to focus on the effect of the moves on the structure of the solution. A move m
is defined as a set of edges Rm ⊆ E that must be removed from the solution,
and a set of edges Im ⊆ E which must be inserted. We also say that the edges
in Rm are affected by m. We denote by m(s) the solution obtained applying
the move m to s, formally defined as:

m(s) := (Es \Rm) ∪ Im (1)

Definition 2 A move m is said to be legal for a well-formed solution s if

1. Rm ⊆ Es
2. (Im ∩ (Es \Rm)) = ∅
3. m(s) is well-formed.

Definition 3 A set M of legal moves over a solution s is called an independent
set if

1. (Rmi
∪ Imi

) ∩ (Rmj
∪ Imj

) = ∅ ∀mi,mj ∈M (no edge overlap)
2. M(s) =

(
Es \

(⋃
m∈M Rm

))
∪
(⋃

m∈M Im
)

does not contain subtours

6

where M(s), with a slight abuse of notation, denotes the solution obtained
applying all the moves m ∈M to s.

It holds that:

Proposition 1 If M is a set of independent moves on a well-formed solution
s then

1. M(s) is a well-formed solution
2. cost(M(s)) = cost(s) +

∑
m∈M ∆(m) (cost-additivity)

where ∆(m) is the cost difference induced by move m, or

∆(m) =
∑
e∈Im

ce −
∑
e∈Rm

ce.

Proof In order to verify that the solution is well-formed, consider first a node
v ∈ V different from the depot. Since all moves in M are legal, if a move
m cuts an edge incident to v, it will also insert a new edge touching v, and
if it cuts two edges, it will insert two distinct edges. Due to the no overlap
hypothesis, no edge can be removed or inserted twice by different moves, thus
the degree two of the node is preserved. By hypothesis, the new solution does
not contain subtours, hence the solution is well formed.

Concerning cost-additivity, the cost of a solution is given by the sum of its
edge costs:

cost(M(s))) =
∑

e∈(Es\(
⋃

m∈M Rm))∪(
⋃

m∈M Im)

ce

=
∑
e∈Es

ce −
∑

e∈
⋃

m∈M Rm

ce +
∑

e∈
⋃

m∈M Im

ce (2)

=
∑
e∈Es

ce −
∑
m∈M

∑
e∈Rm

ce +
∑
m∈M

∑
e∈∪Im

ce (3)

= cost(s) +
∑
m∈M

∆(m)

where (2) follows from the fact that mi and mj are legal moves for s, and (3)
follows from the hypothesis of no edge overlap between the moves in M . ut

Proposition 1 tells us that it is possible to combine moves that involve
disjoint sets of edges, as long as they do not create subtours. Also note that,
in a practical setting, according to our definition of independent moves it does
not matter in which order the moves of an independent set are applied.

Although the concept of independent moves is general enough, its relevance
in a specific algorithm depends on the moves the algorithm is allowed to per-
form. In the following section we will describe the algorithm we used to prove
the usefulness of applying simultaneous moves, and a set of well known and
widely used moves will be defined. In Appendix A we will show under which
conditions a set of moves is independent in the sense of Definition 3, so that
it can be applied in order to generate a well-formed solution.

7

3 The proposed algorithm

In this paper we start from a standard method based on neighborhood ex-
ploration, tabu search and destroy-and-repair. The basic algorithm consists
in applying a set of standard moves to the incumbent solution, within a pre-
scribed set of possible move types; according to the tabu scheme, the best
move(s) in the neighborhood are applied to the current solution, even if this
might imply a worsening of the objective function. These moves and their in-
verse ones are labeled as tabu, and their application is forbidden for the next
b
√
nc + 1 iterations, where n = |V | − 1 is the number of orders. When, for a

certain number of iterations, no improvement is observed, a set of destroy and
repair moves are applied in order to let the algorithm escape a local minimum,
as it is quite standard in many recent VRP approaches (see, e.g., [3,6,12,13]).
A high level description of the overall approach is reported in the following
scheme:

Input: An initial solution xInitial
xLocalBest← xInitial;
xIncumbent← xLocalBest;
xBest← xLocalBest;
c←∞;
while ¬terminate() do

while ¬innerTerminate() do
M← getIndependentSet(xIncumbent);
xCandidate← apply (M, xIncumbent);
if cost(xCandidate) < c then

xLocalBest← xCandidate;
c← cost(xCandidate);
if c < cost(xBest) then

xBest← xCandidate;
end

end
xIncumbent← xCandidate;

end
xIncumbent← destroyAndRepair(xLocalBest);

end
return xBest;

Algorithm 1: Tabu Search with Independent Set (TSIS).

The core of the TSIS (Tabu Search with Independent Sets) algorithm is
in the getIndependentSet operator. In standard tabu search methods this is
replaced by the selection of the single most improving (or least worsening)
non-tabu move within a specific neighborhood of the current solution. In our
approach this is extended, as we will see, by means of the selection of a set
of moves suggested by the solution of a MIP model. The candidate solution
is hence obtained by applying to the incumbent solution all the moves con-
tained in M. Another relevant feature of the method is the definition of the

8

destroyAndRepair method, which introduces some diversification, as typically
done in many heuristic approaches. In the following subsections we will list
the elementary moves included in the neighborhood exploration and the ele-
mentary destroy and repair operators employed in our experiments.

3.1 Neighborhood exploration

Several standard and low–complexity operators are defined in order to build
a rich set of moves among which we aim to chose a subset of promising ones.
These moves are elementary enough to allow for a complete enumeration of
all of their possible application to the current solution.

– Relocate Operator: an order i is moved from its original route onto a
different one in a specific position;

i− 1

i

i+ 1

j j + 1

i− 1

i

i+ 1

j j + 1

– Relocate Pair Operator: a pair of adjacent orders i, i+1 is moved from
its original route onto a different one. These orders are kept adjacent in
the destination route;

i− 1

i i+ 1

i+ 2

j j + 1

i− 1

i i+ 1

i+ 2

j j + 1

– Exchange Operator: two orders i and j (either from the same or from
different routes) are swapped;

i− 1

i

i+ 1

j − 1

j

j + 1

i− 1

i

i+ 1

j − 1

j

j + 1

9

– Exchange Pair Operator: two edges, either from different routes or from
the same one, are swapped;

i− 1

i i+ 1

i+ 2

j − 1

j j + 1

j + 2

i− 1

i i+ 1

i+ 2

j − 1

j j + 1

j + 2

– 2-Opt Operator: 2 edges {i, i+ 1} and {j, j+ 1} from the same route are
replaced by the edges {i, j} and {i+ 1, j + 1};

i j

j + 1 i+ 1

i j

j + 1 i+ 1

– 2-Opt* Operator: given two edges {i, i+ 1} and {j, j + 1} belonging to
two different routes, orders i+ 1 and j + 1 are swapped.

i j + 1

j i+ 1

i j + 1

j i+ 1

3.2 Destroy & Repair

After a certain number of non-improving iterations have been observed, the
current solution is perturbed by means of one of the following destroy operators
(see, e.g., [12]):

– Random Removal: p orders are randomly chosen and removed from their
respective routes;

– Cluster Removal: an order i is randomly chosen. i and the p− 1 orders
closest to i are removed from their respective routes;

– Pair Removal: p/2 orders are randomly chosen. For each of these orders,
the closest order not already selected is also chosen. Then all the selected
orders are removed from their respective routes;

10

– Smart Removal: inspired by [19]. An order i is randomly chosen. Then
the p − ` − 1 order closest to i and the ` orders with the closest position
to i in the route are selected. The order i and all the selected orders are
removed from their respective routes.

The destroy operator is selected randomly at each cycle. To repair the solution,
we apply a best insertion heuristic. However, each order cannot be inserted
back in the same route it belonged to before the destroy phase.

3.3 MIP formulation for the selection of the best independent set of moves

Given a set M = {mi}i∈I of legal and non tabu moves over the incumbent
solution, let C ⊂M ×M be the set of conflicting move pairs, i.e., all the pairs
that violate independence in Definition 3. Formally, the set C is defined as
(mi,mj) ∈M ×M such that either:

(Rmi
∪ Imi

) ∩ (Rmj
∪ Imj

) 6= ∅, or(
Es \ (Rmi

∪Rmj
)
)
∪ (Imi

∪ Imj
) contains subtours.

In the Appendix we report sufficient conditions to evaluate the set C for
the moves defined in Section 3.1.

The neighborhood that we consider in our approach is defined as all the
solutions that can be obtained by applying a subset of independent moves (of
the type described in the previous section). It is exponential in size, as it is a
superset of the one considered in [8].

As we mentioned in the introduction, considering only subsets of indepen-
dent moves with some further restrictions may allow for the use of polynomial-
time algorithms. In our approach, we aim at exploring the whole neighborhood,
thus we resort to a MIP algorithm. An optimal set of independent moves can
be extracted from M by solving the following mathematical program:

min
∑
i∈I

∆(mi)δi (4)

s.t. δi + δj ≤ 1 ∀ i, j : (mi,mj) ∈ C (5)

Lr +
∑
i∈I

λ(r,mi)δi ≤ Q ∀ route r (6)∑
i∈I

δi ≥ 1 (7)

δi ∈ {0, 1} ∀ i ∈ I (8)

where the binary variables δi are 1 if an only if the move mi ∈ M is in the
subset of selected moves, Lr is the load on route r, λ(r,mi) is the variation of
the load on route r after applying the move mi and Q is the capacity of each
vehicle.

This is a standard weighted independent set formulation with additional
side constraints. Constraints (5) imply that only one move for each pair of

11

conflicting moves can be selected. Constraints (6) are capacity constraints,
ensuring that the total capacity of each route is not exceeded. Note that the
routing solution is feasible after all the selected moves have been applied. This
means that we are also considering single moves that would be infeasible on
their own, but, combined with other ones, allow for the overall feasibility to
be recovered. This is also instrumental in avoiding local minima, as we will
show later. Constraints (7) ensure that at least one move is applied, even if
non-improving.

In exact branch-and-cut approaches for independent set problems [14], it
is customary to separate valid inequalities that strengthen the formulation.
It is out of the scope of this work to solve Formulation (4)–(8) to optimality
– indeed, using the MIP solver as a piece of a heuristic framework, we are
satisfied with solutions which are sufficiently good. However, we can exploit the
structure of our problem to easily enumerate a number of cliques in the conflict
graphs. In particular, it is easy to observe that each edge e ∈ E corresponds,
in the conflict graph, to a clique including all the moves that affect that edge,
i.e., such that e ∈ Rm ∪ Im. Then, we can add the inequalities:∑

i∈I: e∈Rmi
∪Imi

δi ≤ 1 ∀e ∈ Es (9)

and remove the subset of Constraints (5) that are dominated by these stronger
cuts. and similarly for any set A of arcs,

In the context of a tabu search algorithm, the MIP model can be integrated
by treating Constraint (6) as a soft constraint:

Lr +
∑
i∈I

λ(r,mi)δi ≤ Q+ yr (10)

where yr ≥ 0 is the excess variable for route r, that is penalized in the objective
function with a penalty term µryr, using the adaptive weights from the tabu
search, as we will show in Section 4.

An issue that may arise in practice is that, when TSIS reaches a local
minimum, and no improving move is available in the neighborhood, the MIP
will simply select the less worsening move and discard all the others. This is
consistent with the standard tabu search behavior. However, in our case this
means wasting a lot of computational power, because of the MIP, just to select
one single move. Taking this into account, it seems reasonable to replace the
bound in Equation (7) with a larger one:∑

i∈I
δi ≥ max{b

√
Rc, 2}

where R is the number of vehicles. This strategy does however have some
drawbacks. As an example, consider the case of being only 1 move away from
the optimal solution. If the MIP is forced to choose at least 2 solutions, then
it will probably choose the “optimal” one, and a second one on an unrelated
route. Tabu lists will then prevent such second move to be undone in the next

12

iterations. However, in this case we can see that all the routes comprising
the optimal solution have been found by TSIS – they just were not found
simultaneously. In such case, solving a set–covering problem at the end of the
algorithm would allow us to recover the optimal solution.

3.4 Set-covering refinement phase

Following what we mentioned in the previous section, we can add to our
method a final refinement phase with the aim to recover and combine good
routes that have been generated during the local search phase.

Let R be the set of all the feasible routes found by TSIS during all the
iterations. Consider a partition of R into P subsets Ri, i ∈ {1 . . . P} such that
two routes rj and rk belong to the same subset if and only if the set of nodes
touched by the edges of rj and by the edges rk are the same. We define such
set as Ni, excluding the depot. For every subset Ri, we define

cRi = min
r∈Ri

cost(r)

and
sRi ∈ arg min

r∈Ri

cost(r)

where cost(r) is the cost of route r. In case there are more than one lowest cost
solution within Ri, sRi

can be any one of them. We can then formulate the
following set–covering problem, introducing binary variables δi, i ∈ {1 . . . P},
which denote whether the route with the lowest cost of Ri is included in the
solution:

min
∑

i∈{1...P}

cRi
δi (11)

s.t.
∑
i:u∈Ni

δi ≥ 1 ∀u ∈ V : u is not the depot (12)

δi ∈ {0, 1}. (13)

Consider the VRP solution s obtained by

s =
⋃

i:δi=1

sRi
.

It is easy to see that this represents a feasible solution which covers all the
nodes in the original VRP problem, and whose cost is either equal to the cost
of best solution found by the tabu search, or lower.

Set covering approaches for the selection of good routes among sets gener-
ated by heuristic algorithms have been proposed, e.g., by [1], who also propose
a fast method to solve the set covering model, by [5] who used a set covering
approach within a local search method based on ant-colony, or by [15], just to
cite a few recent papers which are all based on a similar idea.

13

On a practical note, we implemented two simple tricks that lead to a mea-
surable improvement in the MIP solver speed. Since we know in advance how
many routes the solution can be composed of, we can greatly reduce the solu-
tion space with the constraint: ∑

i∈{1...P}

δi = R,

where R is the number of vehicles. Moreover, the best solution found so far by
TSIS is used as a starting point (or “warm start”) when we invoke the MIP
solver.

4 Numerical results

4.1 Implementation details

The initial solution is computed through a greedy best insertion heuristic.
The destroy & repair phase starts after 50 consecutive iterations without im-
provements on the local solution. The parameters p and ` have been set up
to: {

p = b
√
nc+ 1

` = b0.25 · pc
,

where n is the number of orders. As commonly done in the literature, we did
not enforce the capacity as hard constraints, but we rather used soft constraints
with linear penalties. The penalty weights µr, initialized to 100 for every route
r, are updated using the following rules:

– if the whole solution is feasible, then divide the penalties for every route
by 1.1;

– if the solution is infeasible, then multiply the penalties by 2, but only for
infeasible routes. Leave the other penalties unchanged;

– in any case, restrict the penalties to the range [0.1, 1000].

The same penalty weight of the tabu search are used in the MIP for the se-
lection of independent moves, as mentioned in Section 3.3. In order to achieve
better performance, we decided to put a limit to the number of moves to be
considered within the MIP. Only the 1000 non-tabu moves with the best ob-
jective function improvement are selected at every iteration. Moreover, we set
a time limit of 60 seconds (although it is never reached in our experiments)
and a relative MIP gap stopping criterion of 10%. In Section 4.2, we report an
experiment on the sensitivity of the algorithm to the choice of these parame-
ters.

At the end of TSIS, the set covering model described in Section 3.4 can
be used to further improve the best solution. In what follows, we refer to the
approach that includes this final refinement phase as TSIS-SC.

14

We ran the numerical experiments on a Desktop PC Intel(R) Xeon(R)
CPU E5-2430 v2 @2.50GHz, with Ubuntu 16.04.1. The algorithm was imple-
mented in C++11, while, as a MIP solver, we used Gurobi 6.5 [10]. In order
for the comparison with other single-thread tabu search methods to be fair,
we restricted it to only use 1 thread.

4.2 Results

In our computation experiments, we set out to assess the improvement that can
be obtained through the use of a clever selection of sets of simultaneous moves,
as opposed to a greedy choice. We first performed experiments on a smaller
dataset from [8], which contains instances that are widely used in the VRP
literature, and than we performed more extensive runs on the dataset recently
introduced in [23]. Our aim is to show that an elementary method, equipped
with our independent set component, can deliver solutions whose quality is
very close to those obtained with much more sophisticated approaches.

Experiments with Ergun et al.’s (2006) dataset

Our first experiments have been performed with the dataset of [8]. The aim
was to check whether the much expanded set of candidate moves among which
we chose is capable of producing an improvement which justifies the extra
computational effort due to the choice of using a MIP solver. The instances we
used were those with a single capacity constraint – of course, it would be very
easy to extend our model to deal also with an additional, similar, constraint,
as in some of the test cases in [8]. We run, as in [8], 5 independent tests on the
dataset, with different random seeds, and in Table 1 we report some statistics
on the quality of the solution found by our method in 2h of CPU time for the
first phase, and a set-covering refinement phase of 10 minutes.

The comparison between our results and those published in [8] show a clear
advantage of our approach for what concerns the solution quality. In all the
instances, TSIS-SC is able to beat the best solution found by the algorithm in
[8]. Moreover, in 16 out of 19 instances even the average value over the 5 runs
of TSIS-SC is at least as good as that of the best solution obtained by Ergun
et al.

We also used the dataset of [8] to validate the choice of some parameters
and to check the sensitivity of the results with respect to the choice. We
performed a very limited set of experiments changing, one at a time, two
parameters: the maximum number of non-tabu moves with the best objective
function improvement selected for the MIP formulation (default 1000), and
the relative gap used for stopping the solution of the MIP model (default:
10%). Both parameters control the trade-off between the accuracy of the move
selection phase, and the time devoted to it. Figures 1(left) and 1(right) report
a summary of results showing that from one side our choice of parameters was
quite good and, on the other side, that the sensitivity of the algorithm to this

15

TSIS-SC Ergun et al. % gap TSIS-SC
Problem best avg best vs Ergun et al.

E50-05 524.61 524.61 524.61 0.00
E75-10 835.26 835.26 835.43 -0.02
E100-08 826.14 827.79 826.14 0.00
E100-10 819.56 819.56 819.56 0.00
E120-07 1042.11 1042.11 1042.11 0.00
E150-12 1028.42 1028.69 1033.01 -0.44
E199-17 1291.71 1296.97 1303.21 -0.88
E240-22 707.80 708.06 709.66 -0.26
E252-27 859.47 861.11 869.26 -1.13
E255-14 584.52 585.36 586.44 -0.33
E300-28 997.02 999.16 1010.70 -1.35
E320-30 1082.63 1085.99 1092.29 -0.88
E323-16 743.10 745.17 745.26 -0.29
E360-33 1372.58 1375.78 1385.84 -0.96
E396-34 1347.50 1350.28 1357.97 -0.77
E399-18 920.01 924.28 922.09 -0.23
E420-41 1826.27 1830.81 1854.54 -1.52
E480-38 1626.03 1635.92 1642.92 -1.03
E483-19 1114.05 1122.34 1121.15 -0.63

Table 1 A numerical comparison between the proposed algorithm and the results in [8].
Columns report: the best result (out of 5 independent runs) obtained by TSIS-SC, the aver-
age TSIS-SC cost, the cost reported by Ergun et al. (best out of 5 runs) and the percentage
gap between TSIS-SC and Ergun best costs.

500 moves 1000 moves 2000 moves 5000 moves
Number of moves included in MIP

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

%
 g

a
p
 t

o
 b

e
st

 f
o
u
n
d

0.1 1 10
MIP stopping criterion (% gap)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

%
 g

a
p
 t

o
 b

e
st

 f
o
u
n
d

Fig. 1 Sensitivity analysis on Ergun et al.’s dataset: percentage gap between the actual
and the overall best observed cost, as a function of the number of candidate moves in each
MIP model (left), and the relative gap used as a stopping criterion in the MIP algorithm
(right).

choice is not too high.

Concerning the number of candidate moves at each iteration, the number
of constraints in the MIP model grows quadratically with their cardinality, so
that it becomes challenging to build and solve the problem in a short time if a
larger number of them is considered. On the other hand, reducing the search
space too much yields a worse overall performance. Figure 1 (right) suggests
that reducing the relative gap stopping criterion does not significantly improve

16

the quality of the combined moves: indeed, good solutions are found pretty
quickly by the MIP solver, and most of the time would be spent certifying its
optimality, with only marginal improvements of the primal bound.

Experiments with the “X” dataset by Uchoa et al. (2017)

We performed our more extensive computational experiments using the dataset
recently introduced in [23]. The dataset is comprised of 100 realistic VRP in-
stances, with a number of nodes ranging from 100 to 1000 and a number of
vehicles ranging from 10 to 207, generated with a great variety of parameters
such as demand distribution, depot positioning, and average route size. Using
the same notation used in the dataset, in the following tables a problem with
i nodes (including the depot) and j vehicles will be denoted as X-ni-kj. All
the gaps in the following results have been computed with respect to the best
solution reported in [23].

In order to further validate the correctness of our approach, and to as-
sess the impact of the main algorithmic components, we started by comparing
the basic tabu search algorithm (without independent sets of moves) with
TSIS. Both algorithms share the same code base, with the algorithmic details
described in Section 3, except for the move selection policy. We have put a
2 hours time limit on both algorithms. The results are summarized in Fig-
ure 2, with and without the final set-covering refinement phase on the routes
generated by the local search. We can see that the TSIS approach gives a
substantial improvement with respect to the plain tabu search (TS): using the
same amount of computational resources, the solution gap medians and quar-
tiles are roughly reduced by a factor of 3. Additionally, the pure tabu search
was unable to find a feasible solution on three problems within the dataset
(X-n586-k159, X-n819-k171, and X-n916-k207). Those problems have a num-
ber of vehicles which is quite high with respect to the rest of the dataset, and
are tightly constrained with respect to capacity. On those problems, the basic
tabu search seems unable to solve the underlying bin packing problem defined
by the capacity constraints. In our computational experiments, TSIS did not
suffer from this limitation.

It is interesting to note that the number of iterations performed by the
tabu search in the same amount of time varies from 90 times (on smaller
instances) to 5 times (on larger instances) the ones made by TSIS. However,
TSIS consistently achieves a much better solution quality, suggesting that it
is worth to devote some extra CPU time at every iteration to make sure that
a good set of moves is selected.

Focusing on the impact of the different components, it is clear that, al-
though the set-covering is beneficial for both methods, the main improvement
is given by the use of the MIP-based move selection component.

Finally, we performed more intensive runs with TSIS-SC only, setting the
time limit at 16 hours for every problem, with 2 hours of refinement phase.
Results are displayed in Table 2. With “Best TSIS-SC” and “average TSIS-
SC” we denote the best and average cost of the solution found by TSIS-SC in

17

TS TS-SC TSIS TSIS-SC

0

2

4

6

8

10

12

14
%

 g
a
p

Fig. 2 Boxplot showing the percentage gap to the best solution found by UHGS in [23]
after 2 CPU hours of TS and TSIS, with and without set-covering phase (15 minutes). The
use of independent sets of moves gives a significant performance boost. The SC phase is
especially useful for TSIS due to the reasons mentioned at the end of Section 3.3, but its
effect is marginal compared to the difference obtained by the move selection policy.

5 runs; the columns “%gap (best)” report the percentage gap between the best
result found by TSIS-SC and the best found in 50 runs of ILS-SP and UHGS
respectively. Analogously, the following two columns report the comparison
between average results by our method (over 5 runs) and the averages over
50 runs of ILS-SP and of UHGS. We can see that, for problems with up to
200 nodes, TSIS-SC is able to find the optimal solution most of the times,
and stays well within the 1% optimality gap when it does not. The optimality
gap slightly increases for problems with a high number of nodes, suggesting
the need for either more computational resources, or some refinement in the
solution strategy.

Name Best average % gap (best) % gap (average) Proven
TSIS-SC TSIS-SC ILS-SP UHGS ILS-SP UHGS Optimal

X-n101-k25 27591 27591.00 0.00 0.00 0.00 0.00 yes
X-n106-k14 26373 26402.80 0.04 -0.02 0.10 0.08 yes
X-n110-k13 14971 14971.00 0.00 0.00 0.00 0.00 yes
X-n115-k10 12747 12747.00 0.00 0.00 0.00 0.00 yes
X-n120-k6 13332 13334.40 0.00 0.00 -0.02 0.02 yes
X-n125-k30 55539 55539.00 0.00 0.00 -0.24 -0.01 yes
X-n129-k18 28940 28956.00 -0.03 0.00 -0.14 0.03 yes
X-n134-k13 10916 10931.20 0.00 0.00 -0.15 -0.03 yes
X-n139-k10 13590 13590.00 0.00 0.00 -0.10 0.00 yes
X-n143-k7 15726 15729.60 0.00 0.17 -0.10 0.19 yes
X-n148-k46 43448 43448.00 0.00 0.00 -0.01 0.00 yes
X-n153-k22 21225 21245.80 -0.54 0.02 -0.72 0.09 yes
X-n157-k13 16876 16877.20 0.00 0.00 0.01 0.01 yes
X-n162-k11 14138 14141.00 0.00 0.00 -0.13 0.00 yes
X-n167-k10 20557 20626.00 -0.02 0.00 0.08 0.31 yes
X-n172-k51 45607 45607.00 0.00 0.00 -0.02 0.00 yes
X-n176-k26 47832 47857.80 -0.64 0.04 -0.81 -0.21 yes
X-n181-k23 25570 25591.20 0.00 0.00 0.08 0.00 yes
X-n186-k15 24152 24173.00 0.03 0.03 -0.05 0.11 yes

18

Name Best average % gap (best) % gap (average) Proven
TSIS-SC TSIS-SC ILS-SP UHGS ILS-SP UHGS Optimal

X-n190-k8 16992 17011.40 -0.54 0.07 -0.77 0.14 yes
X-n195-k51 44225 44245.80 0.00 0.00 0.03 0.00 yes
X-n200-k36 58660 58694.80 0.06 0.14 0.00 0.12 yes
X-n204-k19 19585 19660.60 0.08 0.10 0.18 0.46 yes
X-n209-k16 30692 30749.80 0.08 0.12 -0.05 0.23 yes
X-n214-k11 11052 11082.40 0.61 1.81 -0.40 1.88 yes
X-n219-k73 117595 117597.20 0.00 0.00 0.00 -0.01 yes
X-n223-k34 40480 40554.20 0.02 0.11 0.05 0.14 yes
X-n228-k23 25804 25847.40 0.24 0.24 0.20 0.26 yes
X-n233-k16 19387 19405.40 0.63 0.82 0.36 0.61 yes
X-n237-k14 27089 27164.40 0.17 0.17 0.32 0.36 yes
X-n242-k48 82820 82965.80 0.06 0.02 0.11 0.02 no
X-n247-k50 37278 37282.60 -0.03 0.01 -0.60 0.00 yes
X-n251-k28 38825 38898.20 0.25 0.33 0.15 0.26 no
X-n256-k16 18889 18910.60 0.05 0.05 0.14 0.16 no
X-n261-k13 26775 26834.20 0.26 0.82 -0.13 0.77 no
X-n266-k58 75478 75666.40 0.00 -0.05 0.14 -0.12 yes
X-n270-k35 35351 35407.20 0.08 0.14 0.12 0.11 no
X-n275-k28 21245 21283.00 0.00 0.00 0.13 0.01 yes
X-n280-k17 33651 33715.40 0.08 0.44 -0.16 0.33 no
X-n284-k15 20509 20562.00 1.05 1.39 0.56 1.36 no
X-n289-k60 95736 95864.40 0.44 0.52 0.43 0.41 no
X-n294-k50 47320 47437.20 0.28 0.32 0.39 0.38 no
X-n298-k31 34241 34301.80 0.01 0.03 -0.16 0.03 yes
X-n303-k21 21889 21946.20 0.35 0.65 0.23 0.44 no
X-n308-k13 26037 26068.60 0.53 0.69 -0.12 0.67 no
X-n313-k71 94308 94588.80 0.12 0.23 0.31 0.34 no
X-n317-k53 78359 78387.00 0.01 0.01 0.04 0.00 yes
X-n322-k28 29968 30031.00 0.30 0.33 0.13 0.25 no
X-n327-k20 27713 27763.60 0.41 0.54 -0.18 0.49 no
X-n331-k15 31128 31174.40 0.07 0.08 -0.20 0.05 no
X-n336-k84 139235 139772.60 0.03 0.02 0.22 0.17 no
X-n344-k43 42265 42395.80 0.28 0.39 0.26 0.44 no
X-n351-k40 26184 26334.00 0.63 0.92 0.70 1.23 no
X-n359-k29 52161 52197.20 0.88 1.27 0.23 0.92 no
X-n367-k17 22821 22968.40 -0.35 0.03 -0.15 0.57 no
X-n376-k94 147713 147729.80 0.00 0.00 0.01 -0.01 yes
X-n384-k52 66568 67015.80 0.68 0.74 0.97 1.13 no
X-n393-k38 38510 38587.00 0.55 0.63 0.34 0.55 no
X-n401-k29 66707 66861.40 0.38 0.70 0.22 0.75 no
X-n411-k19 19829 19931.80 0.19 0.56 -0.12 0.95 no
X-n420-k130 107798 107892.60 0.00 0.00 0.05 -0.03 yes
X-n429-k61 66117 66287.40 0.84 0.94 0.82 0.97 no
X-n439-k37 36452 36571.60 0.16 0.16 0.36 0.33 no
X-n449-k29 56514 56605.20 1.35 2.05 0.71 1.89 no
X-n459-k26 24495 24559.60 1.18 1.30 0.40 1.18 no
X-n469-k138 222139 222474.60 0.10 0.03 0.13 -0.06 no
X-n480-k70 90316 90572.20 0.69 0.87 0.78 0.90 no
X-n491-k59 67801 68031.00 1.25 1.75 1.20 1.69 no
X-n502-k39 69484 69553.80 0.29 0.33 0.30 0.32 no
X-n513-k21 24394 24450.80 0.25 0.80 0.07 0.63 no
X-n524-k153 154611 154639.40 -0.06 -0.11 -0.24 -0.22 no
X-n536-k96 95880 96103.60 0.37 0.80 0.42 0.81 no
X-n548-k50 87331 87498.00 0.72 0.59 0.72 0.57 no
X-n561-k42 43346 43460.00 0.92 1.38 0.76 1.38 no
X-n573-k30 51184 51222.60 0.18 0.80 0.10 0.60 no
X-n586-k159 190993 191497.00 0.20 0.24 0.30 0.35 no
X-n599-k92 110342 110773.60 1.18 1.41 1.27 1.57 no
X-n613-k62 60624 61051.40 0.66 1.42 1.00 1.82 no
X-n627-k43 63286 63370.80 0.80 1.48 0.74 1.35 no
X-n641-k35 65330 65631.20 1.35 2.34 1.59 2.24 no
X-n655-k131 106816 106908.00 0.03 -0.01 0.12 0.01 yes
X-n670-k130 147192 147503.80 0.10 0.33 -0.12 0.19 no
X-n685-k75 69985 70210.40 1.95 2.28 1.77 2.27 no
X-n701-k44 83887 84165.40 1.21 1.94 1.35 2.03 no
X-n716-k35 44611 44871.00 1.34 2.50 1.58 2.82 no
X-n733-k159 137085 137512.40 0.18 0.53 0.34 0.68 no
X-n749-k98 79263 79525.00 1.68 1.99 1.60 2.13 no
X-n766-k71 117682 118134.60 1.94 2.62 2.07 2.59 no
X-n783-k48 74720 74963.80 1.73 2.66 1.68 2.68 no
X-n801-k40 74314 74530.80 0.66 0.99 0.71 1.08 no
X-n819-k171 160751 160885.00 1.00 1.35 0.92 1.25 no
X-n837-k142 197341 197726.40 1.30 1.58 1.38 1.67 no
X-n856-k95 89853 90069.40 0.89 0.82 0.89 0.93 no
X-n876-k59 101319 101524.60 1.14 1.61 1.10 1.64 no
X-n895-k37 55796 56129.20 1.98 3.00 2.13 3.10 no
X-n916-k207 332942 333353.00 0.70 0.94 0.73 0.96 no
X-n936-k151 134897 135788.80 0.98 1.32 0.94 1.70 no
X-n957-k87 86912 87102.60 1.42 1.45 1.36 1.49 no
X-n979-k58 121002 121775.20 0.84 1.52 1.27 1.90 no
X-n1001-k43 74059 74589.40 0.38 1.81 0.82 2.24 no

Min -0.64 -0.11 -0.81 -0.22
Max 1.98 3.00 2.13 3.10
Avg. 0.42 0.65 0.36 0.69

Median 0.19 0.33 0.15 0.37

19

Name Best average % gap (best) % gap (average) Proven
TSIS-SC TSIS-SC ILS-SP UHGS ILS-SP UHGS Optimal

Table 2: Results of the best out of 5 independent runs of TSIS vs 50 runs of ILS-SP (Subramanian)
and 50 runs of UHGS (Vidal) as reported in [23]. The first two columns represent the best and
the average result obtained by our method; the following two columns report the gap between our
best solution and the best reported for ILS-SP and UHGS. Similarly, the two following columns
report the average gaps between our average result and the average results obtained by ILS-SP
and UHGS. The last column indicates whether the best result here reported has been proven to
be optimal according to [23].

We can observe that TSIS-SC displays a very good performance when
compared with state of the art, refined methods; the gap with respect to both
ILS-SP and UHGS are consistently very low, despite the fact that our method
was executed only 5 times, while both benchmark algorithms were run 50
times. In more than a few cases our method found an improved solution and
the median gap between our algorithm and UHGS is well below 0.5%, thus
confirming the validity of the approach.

5 Conclusions

Our aim while performing this research effort was to check whether the appli-
cation of carefully chosen sets of independent moves is beneficial for a standard
algorithm for VRP. Our intention was to show that, by suitably defining the
concept of independence and by exploiting the power of modern MIP solvers,
significant advantages can be expected even for the most studied VRP variant.
We have also introduced a formal definition of independence and proven some
properties which form the basis for the correctness of the proposed approach.

Through a large set of numerical experiments we have shown that using
moves suggested by a MIP model greatly improves the quality of a basic VRP
heuristic. This supports the idea that, notwithstanding its computational bur-
den, plugging our MIP-based neighborhood search in any of the several pow-
erful state-of-the-art methods for VRP might yield significant improvements.
We have also shown that, thanks to this idea, a simple-minded heuristic algo-
rithm is capable of discovering solutions whose quality is equal, or very close,
to that found by the best, and significantly more complex, methods available.
This opens the way towards more specialized implementations for different
and more complex variants of VRP. In order to do so, we can either establish
different (and more restrictive) independence definitions (e.g., for graphs with
asymmetric costs, pairs of nested moves can be forbidden due to the reversal
of some arcs), or reformulate the move selection problem to account for the pe-
culiarities of the variant at hand. Another direction which might be promising
is to substitute the MIP algorithm with a carefully designed heuristic method,
capable of producing good sets of independent moves in a substantially smaller
computational time.

20

Acknowledgment

We are grateful to both reviewers and the associate editor for their stimulating
comments on the first version of this paper: answering those comments helped
us to significantly improve the quality of this paper.

A Appendix

In this section we will provide the conditions required in order to safely combine sets of legal
moves. First we show that, under suitable conditions, each of the moves considered in TSIS
is legal.

Proposition 2 Given a well-formed solution s, a relocate(v,{y,z}) move m that moves
the order v into the edge {y, z} ∈ Es, with v 6= y, v 6= z, is legal.

Proof By definition of the relocate operator, Rm = {{u, v}, {v, w}, {y, z}} where u and w
are the two nodes adjacent to v, and Im = {{y, v}, {v, z}, {u,w}}. It is easy to verify that
Rm ⊆ Es, and Im ∩ (Es \ Rm) = ∅, even in the case where u = y and/or w = z, otherwise
s could not be a well-formed solution. It is also trivial to verify that the move preserves the
degree of the involved nodes.

Finally, suppose by contradiction that the move creates subtours when applied on a well-
formed solution s. Let T be the set edges comprising such subtour. Note that, if {y, v} ∈ T ,
then also {v, z} ∈ T , otherwise the degree of v would not be preserved. Then three cases
can happen

– T ∩ Im = ∅. Then also T ⊆ Es, so s is not a well-formed solution.
– {u,w} ∈ T . Then consider the set T ′ = (T \ {u,w}) ∪ {{u, v} ∪ {v, w}. Since this

operation replaces the arc {u,w} with the pair {u, v} and {v, w}, also T ′ contains a
tour. But we can see that by construction T ′ ⊆ Es, so s is not a well-formed solution.

– {y, v} ∈ T and {v, z} ∈ T . Then consider T ′ = (T \ {y, v} \ {v, z}) ∪ {y, z}. Following
the same reasoning as the previous case, we can see that also T ′ contains a tour, and
that T ′ ⊆ Es, so again s is not a well-formed solution.

Proposition 3 Given a well-formed solution s, an exchange(v,y) move that swaps two
orders v and y is legal.

Proof By definition of the exchange operator, Rm = {{u, v}, {v, w}, {x, y}, {y, z}} where
u,w and x, z are the nodes adjacent to v and y, respectively, and Im = {{u, y}, {y, w}, {x, v}, {v, z}}.
It is easy to verify that Rm ⊆ Es, and Im ∩ (Es \ Rm) = ∅, even in the case where w = x
and/or u = z, otherwise s could not be a well-formed solution.

The move preserves the degree of the involved nodes, and does not create subtours. The
proof is trivial and follows the exact same structure as the one for the relocate operator. ut

Proposition 4 Given a well-formed solution s, a relocate-pair({v,w},{y,z}) move m
that relocates the edge {v, w} ∈ Es into the edge {y, z} ∈ Es is legal.

Proof Let us denote by u 6= w the other node adjacent to v in Es (i.e., {u, v} ∈ Es) and
analogously x 6= u is adjacent to w. Then this move is defined through

Rm = {{u, v}, {w, x}, {y, z}, {v, w}}
Im = {{u, x}, {y, v}, {v, z}, {v, w}}

and the proof proceeds similarly to the previous one. ut

Notice that in the definition of this move we chose to insert edge {v, w} both in Rm and in
Im. This will prove useful in order to to ensure that the edge {v, w} remains in Es when
combining this move with other ones, as we will see later.

21

Proposition 5 Given a well-formed solution s, an exchange-pairs({v,w},{y,z}) move
that swaps two edges {v, w} ∈ Es and {y, z} ∈ Es is legal.

The proof is omitted, as trivial and similar to the previous ones. As before, we assume that
both edges {v, w} and {y, z} appear both in Rm and in Im in order to ensure that they are
not removed by other moves, when we will combine them.

Theorem 1 A set M of legal moves of the type relocate, exchange, relocate-pair,
exchange-pairs with no edge overlap over a well-formed solution s is independent in the
sense of Definition 3.

Proof We need to show that the solution obtained after applying all the moves in M does
not contain subtours. To do so, consider any sequence of moves in M , in any order. The
first move m1 can be applied to s, and m1(s) is still well-formed, by hypothesis and hence
does not contain subtours.

Consider the n-th move in the sequence and consider the n − 1 moves applied before.
Let sn−1 denote the solution obtained after the application of these moves, and assume that
it does not contain subtours. The n–th move can be applied since the edges affected by mn

are, by hypothesis, non-overlapping with all the other ones, so the edges in Rmn belong to
sn−1 and Imn do not. Then by Propositions 2–5 move mn is legal, sn is well-formed, so it
does not contain subtours. The claim follows by induction. ut

A.1 Extension to 2-opt moves

In the previous subsection we have proved that several classes of moves can be safely com-
bined. More specifically, it is always safe to combine non-overlapping relocate, exchange,
relocate-pair, and exchange-pairs moves, due to the fact that the only requirements for
them to be legal is that the edges in Rm are in the solution they are applied to (and those in
Im are not). More complex moves require some additional pre-conditions in order to avoid
sub-tours. For 2-opt moves, these conditions depend on the relative order of the nodes in
the tour.

Let us define a path p as an ordered sequence of nodes which are pairwise adjacent in
the solution s. A path is simple if no node appears more than once in it. For any two nodes
u, v in the same route, the path p induces a partial ordering ≺p such that u ≺p v if u
precedes v in the path p. Observe that u and v are not required to be adjacent.

Proposition 6 Given a well-formed solution s, a 2-opt({u,v},{y,z}) move m over s,
defined as Rm = {{u, v}, {y, z}} ⊂ Es and Im = {{u, y}, {v, z}} 6⊂ Es, with u, v, y, z
belonging to the same tour (route), is legal if and only if there is a simple path p where
u ≺p v ≺p y ≺p z.

Proof If a simple path p with u ≺p v ≺p y ≺p z exists, then cutting the edges Rm =
{{u, v}, {y, z}} in the tour creates two disconnected components: a path P1 that contains u
and z at the two ends, and a path P2 with v and y at the two ends. The nodes u, v, y, z have
degree 1 after the cut. Inserting the edges Im = {{u, y}, {v, z}} fulfills the degree condition,
and it reconnects the two components, creating a single tour. Thus the move is legal.

Let us now assume that there is no simple path p over the considered route with u ≺p

v ≺p y ≺p z. Since u must be adjacent to v, and y to z, it is easy to verify that there
must be a path q such that v ≺q u ≺q y ≺q z. If such path exists, removing the edges
Rm = {{u, v}, {y, z}} creates two disconnected components: a path p1 with endpoints v and
z, and a path p2 with endpoints u and y. Inserting the edges Im = {{u, y}, {v, z}} fulfills
the degree condition, but it does not reconnect the components, creating two disconnected
subtours. Then the precedence must hold, and the claim follows. ut

When combining 2-opt moves, then, we must pay particular care to maintain the nec-
essary and sufficient condition in Proposition 6. To show how this can be achieved, let us
start with the definition of nested 2-opt moves.

22

Fig. 3 The move mi (that removes the dashed edges) is nested in mj (that removes the
dotted edges). Applying both moves on s (left) does not introduce subtours (right).

Fig. 4 Applying intertwined moves on a solution s (left) does not guarantee the absence of
subtours (right). In this example, two intertwined moves create a disconnected subtour (the
four nodes in the middle), although both of them are legal if applied singularly.

Definition 4 Given two 2-opt moves mi = 2-opt({ui, vi}, {yi, zi}) and mj = 2-opt({uj , vj}, {yj , zj})
over the same route of a solution s, let p̄i be the set of nodes in the simple path that con-
nects vi to yi not passing through the depot, and let p̄j be the set of nodes in the path that
connects vj to yi not passing through the depot. Three cases can occur:

– if p̄i ⊂ p̄j , we say that mi is nested into mj ;
– if p̄i ∩ p̄j = ∅, we say that mi and mj are disjoint ;
– if p̄i∩ p̄j 6= ∅, but neither is nested in the other, we say that mi and mj are intertwined.

Two 2-opt moves are intertwined if neither is nested into the other. Applying simulta-
neously two intertwined 2-opt moves does not guarantee the absence of subtours, as shown
in Figure 4.

Definition 5 Let Ē ⊆ Es be a set of edges belonging to the same route. Consider any
partial ordering on the nodes of the edges in Ē and a simple directed path following that
order that connects all the nodes in the route.

We say here that a move preserves the relative order of Ē if, after its application to s,
the edges in Ē still belong to the same tour, and it is still possible to find a path over such
tour so that the chosen partial ordering of the nodes of the edges in Ē is preserved.

Note that no partial ordering can be defined on edges that belong to different tours.
Two preliminary results are needed before we can finally prove how 2-opt moves can

be safely combined with the others.

Lemma 1 Given a well-formed solution s, a move m of the type relocate, exchange,
relocate-pair, exchange-pairs, preserves the relative order of any pair of edges {u, v},
{x, y} not affected by the move.

Proof Consider a legal relocate move m that moves the order b with adjacent nodes a, c
into the edge {f, g}. Assume that a simple path p induces the ordering u ≺p v ≺p x ≺p y.
We can distinguish two cases:

– p does not include the edges in Rm. Then the same path also exists in m(s), so the
order is trivially preserved.

– p includes {a, b, c}. Assume that p is defined as p = (u, v, . . . , a, b, c, . . . , x, y). Then
consider in m(s) the path q = (u, v, . . . , a, c, . . . , x, y), where the edge {a, c} has been
inserted by applying m. Over q, u ≺q v ≺q x ≺q y.

23

– p includes {f, g}. Assume that p is defined as p = (u, v, . . . , f, g, . . . , x, y). Then consider
in m(s) the path q = (u, v, . . . , f, b, g, . . . , x, y), where the edges {f, b} and {b, g} have
been inserted by applying m. Over q, u ≺q v ≺q x ≺q y.

Analogous arguments can be applied to show the claim holds also for the other types of
moves. ut

Lemma 2 Given a well-formed solution s, a legal 2-opt move m preserves the relative
order of any two edges {u, v}, {x, y} if they belong to the same of the two connected com-
ponents in Es \Rm.

Proof Assume that a simple path p induces the ordering u ≺p v ≺p x ≺p y. Taking into
account the move m, we can distinguish two cases:

– p does not include the edges in Rm. Then the same path also exists in m(s), so the
order is trivially preserved.

– p include both edges in Rm = {{a, b}, {c, d}}. Assume w.l.o.g. that p is defined as p =
(u, v, . . . , a, b, . . . , c, d, . . . , x, y). Then consider in m(s) the path q = (u, v, . . . , a, c, . . . , b, d, . . . , x, y),
where the nodes between a and d are reversed due to the application of the move. Over
q, u ≺q v ≺q x ≺q y.

The case where p includes only one of the edges in Rm is excluded by the hypothesis that
{u, v}, {x, y} lie in the same connected component of Es \Rm. Then the claim follows. ut

We can now show that, if we restrict ourselves to nested moves, as in Figure 3, the
following result holds:

Theorem 2 Given a set M of legal moves of the type relocate, exchange, relocate-pair,
exchange-pairs, 2-opt with no edge overlap over a well-formed solution s, if all pairs
mi,mj of 2-opt moves are non-intertwined, then the set is independent.

Proof We need to show that the solution obtained after applying all the moves in M does
not contain subtours. To do so, consider any sequence of moves in M , in any order. The first
move of the sequence m1 can be applied to s, and m1(s) is still well-formed, by hypothesis,
thus no subtour exists. Moreover, by Lemmas 1–2 the relative order of any two edges affected
by any other 2-opt move mk with k > 1 is preserved (since all 2-opt are pairwise nested in
s), so all pairwise non-intertwined 2-opt moves are still so.

Let mn be the n-th move in the sequence, and let sn−1 denote the solution obtained
after the application of the first n−1 moves. By inductive assumption, sn−1 does not contain
subtours, the relative order of any two edges affected by any 2-opt move mk with k > n−1
is preserved, and all pairs of 2-opt moves that were non-intertwined on s, are still so in sn−1.
Then:

– If the n–th move is not a 2-opt, it can be legally applied since the edges affected by mn

are, by hypothesis, non-overlapping with all the other moves in M , so the edges in Rmn

still belong to sn−1, and those in Imn do not. The solution sn does not contain subtours.
By applying Lemma 1, the order of any two edges not affected by mn is preserved and
all pairwise non-intertwined 2-opt moves are still so.

– If on the contrary the n–th move is a 2-opt, it can be applied without introducing
subtours, since the relative order of the edges in Rmn is preserved in sn−1 by the
inductive assumption. We must now show that the order is preserved also in sn. Consider
any 2-opt move mk with k > n + 1. By the inductive assumption, mn and mk are still
non-intertwined in sn−1 so the move mn preserves the order of the two edges in Rmk

by Lemma 2. By applying the same lemma, all non-intertwined moves are still so in sn.

The claim follows by induction. ut

24

A.2 Extension to 2-opt∗ moves

The classes of moves that can be combined can be further extended to include the 2-opt∗

operator.

Proposition 7 Given a well-formed solution s, a 2-opt∗ move m over s, defined as Rm =
{{u, v}, {y, z}} ⊂ Es and Im = {{u, y}, {v, z}} 6⊂ Es, with {u, v} and {y, z} belonging to
two different tours (routes), is legal.

Proof Let us consider only the subset of Es that contains the two tours with the nodes
u, v and y, z, respectively. Cutting the edges Rm = {{u, v}, {y, z}} creates a tree with the
depot as the root node, and four linear branches with the nodes u, v, y, z as leaves. Inserting
back in the solution the edges Im = {{u, y}, {v, z}} reestablishes the degree condition and
reconnects the dangling branches, thus obtaining two tours, connected by the depot, which
contain the nodes u, y and v, z, respectively. The solution is well-formed. ut

The additional assumption here is that the edges in Rm must be in two different routes.
To safely combine them, then, it is sufficient to ensure that no route is affected by more than
one 2-opt∗. Concerning the interaction with 2-opt moves, similar steps to what is shown in
the previous subsection can be followed.

Definition 6 Given a 2-opt move mi = 2-opt({ui, vi}, {yi, zi}) and a 2-opt∗ move mj =
2-opt∗({uj , vj}, {yj , zj}) with {ui, vi}, {yi, zi}, {uj , vj} belonging to the same route of a
solution s, and {yj , zj}) belonging to a different one, let p̄i be the set of nodes in the simple
path that connects vi to yi not passing through the depot. Two cases can occur:

– if {uj , vj} ⊂ p̄i, we say that mj is nested into mi;
– if {uj , vj} 6⊂ p̄i, we say that mi and mj are disjoint.

Lemma 3 Given a well-formed solution s, a legal 2-opt∗ move m preserves the relative
order of any pair of edges {u, v}, {x, y} in the same tour in s, if there is a tour in m(s)
that still contains them both.

Proof Consider the path p = (u, v, . . . , x, y) that induces the ordering u ≺p v ≺p x ≺p y.
Let m be a legal 2-opt∗ move. The set Rm consists of two edges, belonging to different
routes. If {u, v}, {x, y} still belong to the same tour in m(s), then p does not include the
edge in Rm – otherwise they would be in two different routes. This means that p also exists
in m(s), and the order is preserved. ut

Theorem 3 Given a set M of non-overlapping legal moves over a well-formed solution s,
if:

– all pairs mi,mj ∈ M of 2-opt moves are non-intertwined (either one is nested in the
other, or they are disjoint)

– for each route in s, there can be at most one 2-opt∗ affecting any edge of that route,
and it must be disjoint from all the 2-opt moves over that route

then the set is independent.

Proof We need to show that the solution obtained after applying all the moves in M does
not contain subtours.

An induction proof that follows the same idea used in Theorem 2 can be used. For sake
of readability, we will omit the details. To prove the thesis, it is sufficient to guarantee,
applying Lemmas 1, 2 and 3, that at each step of the induction:

– the relative order of any two edges affected by any 2-opt is preserved
– all pairwise non-intertwined 2-opt moves are still so
– for any 2-opt∗ move m ∈M , the edges Rm are still in different routes
– all pairs of 2-opt∗ and 2-opt moves are still disjoint.

ut

25

References

1. Boschetti, M., Maniezzo, V.: A set covering based matheuristic for a real-world city lo-
gistics problem. International Transactions in Operational Research 22, 169–196 (2015)

2. Bosco, A., Laganà, D., Musmanno, R., Vocaturo, F.: A matheuristic algorithm for the
mixed capacitated general routing problem. Networks 64(4), 262–281 (2014)

3. Bräysy, O., Gendreau, M.: Vehicle routing problem with time windows, part i: Route
construction and local search algorithms. Transportation Science 39(1), 104–118 (2005)

4. Congram, R.K., Potts, C.N., van de Velde, S.L.: An iterated dynasearch algorithm for
the single-machine total weighted tardiness scheduling problem. INFORMS Journal on
Computing 14(1), 52–67 (2002)

5. Corman, F., Voß, S., Negenborn, R.R. (eds.): An Ant Colony-Based Matheuristic Ap-
proach for Solving a Class of Vehicle Routing Problems. Springer International Pub-
lishing, Cham (2015)

6. Dayarian, I., Crainic, T.G., Gendreau, M., Rei, W.: An adaptive large neighborhood
search heuristic for a multi-period vehicle routing problem. Tech. Rep. CIRRELT-2014-
55, CIRRELT (2014)

7. De Franceschi, R., Fischetti, M., Toth, P.: A new ILP-based refinement heuristic for
vehicle routing problems. Mathematical Programming 105(2-3), 471–499 (2006)

8. Ergun, Ö., Orlin, J.B., Steele-Feldman, A.: Creating very large scale neighborhoods out
of smaller ones by compounding moves. Journal of Heuristics 12(1), 115–140 (2006)

9. Foster, B.A., Ryan, D.M.: An integer programming approach to the vehicle scheduling
problem. Journal of the Operational Research Society 27(2), 367–384 (1976)

10. Gurobi Optimization, I.: Gurobi optimizer reference manual (2016). URL http://www.

gurobi.com

11. Kelly, J.P., Xu, J.: A set-partitioning-based heuristic for the vehicle routing problem.
INFORMS Journal on Computing 11(2), 161–172 (1999)

12. Koç, Ç., Bektaş, T., Jabali, O., Laporte, G.: A hybrid evolutionary algorithm for het-
erogeneous fleet vehicle routing problems with time windows. Computers & Operations
Research 64(0), 11 – 27 (2015)

13. Mancini, S.: A real-life multi depot multi period vehicle routing problem with a hetero-
geneous fleet: Formulation and adaptive large neighborhood search based matheuristic.
Transportation Research Part C: Emerging Technologies pp. 100–112 (2016)

14. Nemhauser, G.L., Wolsey, L.A.: Integer programming and combinatorial optimization.
Wiley & Sons, Inc. (1988)

15. Pillac, V., Guéret, C., Medaglia, A.L.: A parallel matheuristic for the technician routing
and scheduling problem. Optimization Letters 7(7), 1525–1535 (2013)

16. Potts, C.N., van de Velde, S.L.: Dynasearch–Iterative local improvement by dynamic
programming. Part I. The traveling salesman problem. Tech. rep., University of Twente
(1995)

17. Riise, A., Burke, E.K.: On parallel local search for permutations. Journal of the Oper-
ational Research Society 66(5), 822–831 (2014)

18. Rochat, Y., Taillard, É.D.: Probabilistic diversification and intensification in local search
for vehicle routing. Journal of heuristics 1(1), 147–167 (1995)

19. Rousseau, L.M., Gendreau, M., Pesant, G.: Using constraint-based operators to solve
the vehicle routing problem with time windows. Journal of heuristics 8(1), 43–58 (2002)

20. Schmid, V., Doerner, K.F., Hartl, R.F., Savelsbergh, M.W., Stoecher, W.: A hybrid
solution approach for ready-mixed concrete delivery. Transportation Science 43(1),
70–85 (2009)

21. Subramanian, A., Uchoa, E., Ochi, L.S.: A hybrid algorithm for a class of vehicle routing
problems. Computers & Operations Research 40(10), 2519–2531 (2013)

22. Toth, P., Vigo, D.: Vehicle Routing: Problems, Methods, and Applications, second edi-
tion edn. SIAM/MOS, Philadelphia (2014)

23. Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subramanian, A.: New benchmark
instances for the capacitated vehicle routing problem. European Journal of Operational
Research 257(3), 845–858 (2017)

