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Abstract

In this work we compare two optimization approaches to tackle the short-term operational planning of
energy systems including power plants, boilers, heat storage, as well as cogeneration units. We first describe
a mixed-integer nonlinear programming formulation for the problem and then a mixed-integer linear one,
obtained using piecewise-linear approximations of the nonlinear performance functions. We report and
discuss numerical results on a set of realistic test cases, comparing the quality of the solutions and the
computing time of the two approaches.
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1. Introduction

Nowadays quite complex energy systems are used to satisfy the electricity, heat and refrigeration power
demand of industrial processes as well as buildings and cities (e.g., district heating networks). Such systems
generally include not only conventional power plants, boilers, and refrigeration cycles, but also heat pumps,
cogeneration units and heat storage systems. Among them, cogeneration units, also called Combined Heat
and Power (CHP) plants, are particularly advantageous because of their improved integration of the heat
flows which leads to remarkable savings in primary energy consumption and CO2 emissions. On the other
hand, the operational planning of these units is more challenging than that of conventional power plants as
the two power outputs (electricity and heat) are interrelated. In addition, the presence of a heat storage
unit further complicates the planning problem as it links all the time periods making time-decomposition-
based techniques unsuitable. In short-term operational planning, given a set of cogeneration units and other
possible generation and heat storage units, one has to determine for each time period of a time horizon which
units must be switched on/off, the value of their operating variables, and the amount of stored energy in
order to minimize an objective function, while satisfying the demands of electric and thermal power over all
time periods. Since the performance functions of many cogeneration units are nonlinear due to the significant
efficiency decrease at partial loads, the operational planning of a cogeneration system is a nonlinear mixed
integer optimization problem.

In the literature, two main approaches are adopted to model energy and cogeneration systems. In
data-driven approaches, the behavior of the energy systems is described with approximate models obtained
from experimental data. One can consider an explicit approximation of the performance functions of the
units, see, e.g., [7], for linear and nonlinear models. An alternative is to project out the input variables
(typically fuel), and consider a convex-hull representation in the power-heat-cost space, see, e.g., [4] and [2].
In first-principles approaches, the system is decomposed into simpler components with well-known behavior,
and thermodynamic balance equations are imposed to determine the plant operating points. This kind of
approach is often necessary, for example, for complex CHP steam cycles and combined cycles with multiple
operating variables, see, e.g., [3] and [6]. Both types of approach typically lead to mixed-integer (possibly
nonlinear) optimization models, that can be tackled with mathematical programming techniques.

In this article we present a Mixed-Integer Nonlinear Programming (MINLP) formulation and a Mixed-
Integer Linear (MILP) one, where the nonlinear performance functions are approximated using piecewise

Email address: leonardo.taccari@polimi.it (Leonardo Taccari)



linear functions. In the selected computational results that we report, we compare the quality of the solutions
and the efficiency of the two approaches with off-the-shelf exact MINLP and MILP solvers for some realistic
instances of small-to-medium size and complexity.

2. The short-term operational planning problem

We consider cogeneration energy systems involving the following types of cogeneration units:
- One-degree-of-freedom cogenerative units that simultaneously generate electric and thermal power,

e.g., gas turbines, internal combustion engines, fuel cells.
- Two-degree-of-freedom cogenerative units that simultaneously generate electric and thermal power

(depending on two operating variables). This class includes, e.g., gas turbines with supplementary
firing and steam cycles with extraction-condensing turbine.
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Figure 1: Schematic representation of a CHP system that cogenerates electricity and heat at two temperature levels.

The system may also include conventional generation units such as boilers and compression heat pumps.
In addition, storage tanks may be connected to the heat network. The electric power generated by the units
can be used to fulfill the customers’ demands and, at the same time, drive the compression heat pumps.
Electric power can also be sold/purchased to/from the electric grid.

Given a cogeneration system, including (co)generation units and heat storage tanks, time-dependent
demands of low and high-temperature thermal and electric power, and time-dependent price of electricity,
the short-term operational planning problem amounts to determining the schedule that minimizes the total
operating costs, while satisfying the given demands for all the time periods in a given time horizon. Adopting
a data-driven approach, we consider nonlinear performance functions derived from data, either experimental
or provided by the manufacturer, that well approximate the behavior of each unit. We also account for the
start-up phase of units, that may incur a significant energy penalty due to their warm-up phase, and there
is an upper bound on the number of start-up operations.
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3. MINLP formulation and MILP approximation

Using the sets, parameters and decision variables defined in the nomenclature, the short-term cogeneration
systems planning problem can be formulated as the following MI(N)LP:

min
∑
t∈T

(∑
i∈U

cOM

i zit +
∑
i∈U

cSUi δit +
∑
i∈F

cfi fit + bte
+
t − pte−t

)
(1)

s.t.
∑
i∈G

egenit −
∑
i∈E

econsit + e+t − e−t = De
t ∀t ∈ T (2)

∑
i∈H

hit − hdown
t + (ut −

ut+1

1− α
) ≥ Dhigh

t ∀t ∈ T , i ∈ U (3)

∑
i∈L

lit + hdown
t + (vt −

vt+1

1− β
) ≥ Dlow

t ∀t ∈ T , i ∈ U (4)

zitF
min
it ≤ fit ≤ zitFmax

it ∀t ∈ T , i ∈ F (5)

zitE
min
it ≤ econsit ≤ zitEmax

it ∀t ∈ T , i ∈ E (6)

performance constraints linking zit, fit, e
cons
it , yit, xit, e

gen
it , hit, lit ∀t ∈ T , i ∈ U (7)∑

t∈T
δit ≤ Ni ∀t ∈ T , i ∈ U (8)

δit ≥ zit − zit−1 ∀t ∈ T , i ∈ U (9)

egenit , hit, lit, h
down
t , e+t , e

−
t ≥ 0 ∀t ∈ T , i ∈ U (10)

0 ≤ ut ≤ U, 0 ≤ vt ≤ V ∀t ∈ T (11)

0 ≤ δit ≤ 1, zit ∈ {0, 1} ∀t ∈ T , i ∈ U . (12)

The aim is to minimize the operational costs minus the revenue obtained by selling extra electricity to the
grid. In the objective function (1), the start-up penalties cSUi account for the extra cost due to the warm-up
phase, while the fixed cost cOM

i accounts for operation and maintenance costs proportional to the number of
working hours. Constraints (2) impose that the net amount of electric power must satisfy the demand De

t for
period t. It is necessary to distinguish between the energy that is purchased from the power grid, e+t , from
the one that is sold, e−t , since their price is different. Constraints (3) and (4), balance constraints for high and
low-temperature heat, ensure that the thermal requirements in period t are satisfied. High-temperature heat
can be downgraded to low-temperature via hdown. Thermal energy can be stored in the tank for the next
period, as long as the capacities U, V are not saturated, and we account for constant loss rates α, β ∈ [0, 1).
Thermal energy in excess can be dissipated with no additional costs. Constraints (5) and (6) ensure that the
operating variables for a unit i (fuel, consumed electricity) are within the technical limits. Constraints (7),
that model the nonlinear behavior of the generation units, are described in detail in the next two paragraphs.
Constraints (8) and (9) limit the number of start-ups.

Nonlinear performance constraints. Each unit i ∈ U is described in terms of nonlinear performance functions
git(·), that map one or more operating variables (fuel, consumed electricity, supplementary fuel) to an output
variable (low or high-temperature heat, electric power). The performance functions are in general, non-convex
and time-varying due to the non-negligible temperature effect. In addition, if unit i ∈ U is off, its output
has to be 0. Thus, Constraints (7) can be expressed as inequalities of the form ζ ≤ zitgit(θ), where θ is
the vector of input variables and ζ an output variable, and the problem can be solved as a Mixed-Integer
Nonlinear Program.

In the case of generation or cogeneration units with one degree of freedom (d.o.f.), each performance
function git will be a function of one variable (θ is scalar). For instance, given a high-temperature auxiliary
boiler, the output variable is high-temperature thermal power hit, while the only operating variable is fuel fit.
The feasible region for hit will be {0} ∪ [git(F

min
it ), git(F

max
it )]. In the case of cogeneration units with more

degrees of freedom, the performance functions depend on two or more operating variables (θ is a vector).
Two examples are combined cycles with extraction valve regulation (left) and gas turbines with post-firing
(right):
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lit ≤ zitglit(fit, xit)
hit ≤ zitghit(fit, xit)
egenit ≤ zitgeit(fit, xit)

(13)


lit ≤ zitglit(fit, yit)
hit ≤ zitghit(fit, yit)
egenit ≤ zitgeit(fit, yit),

(14)

where the operating variables are the fuel quantity fit, the valve opening percentage xit ∈ [0, 0.4] for the
combined cycle (13) and the supplementary fuel yit for the gas turbine (14).

Piecewise linear approximation. An alternative approach consists in approximating the nonlinear perfor-
mance functions with piecewise linear functions, see e.g. [1], obtaining a more tractable Mixed-Integer
Linear Program (MILP). The piecewise linear approximation of 1-d.o.f. performance functions is rather
straightforward, as it is sufficient to select a set of discretization points on a line, and connect them via line
segments. For 2-d.o.f. units the approximation involves functions of two variables. Several approaches are
available for approximating 2-D functions, differing considerably in terms of accuracy of the approximation
and computational cost of the resulting MILP. In our model, we consider the so-called lambda method de-
scribed, e.g., in [5], that is implemented by triangulating the domain of the nonlinear function. Then, the
value in a point x is computed as the convex combination of the function values in the vertices of the triangle
containing x. This method requires the introduction of O(n1 × n2) binary variables, where n1 and n2 are
the number of discretization points per dimension.

4. Computational experiments

Given the wide variety of cogeneration systems, ranging from small to large scale, we consider two
scenarios from which we build several test instances.

Scenario 1. The first scenario is a micro-cogeneration system designed to provide low and high-temperature
thermal power and electricity to a large building. The system consists of:
• a Solid Oxide Fuel Cell (SOFC) using natural gas to cogenerate electric and thermal power;
• a Heat Pump (HP) using electric power to generate low temperature heat;
• an Auxiliary Boiler (AB), mainly used as a backup;

and a thermal storage for high-temperature heat energy. For this scenario, we consider a single instance
with 3 units that we indicate with 1-a.

Scenario 2. The second scenario is a large scale cogeneration system providing heat to a district heating
network. The system may include one or more of the following units:
• Gas Turbines (GT) with heat recovery;
• Gas Turbines (GT-2) with supplementary firing and heat recovery;
• Natural Gas Combined Cycles (NGCC) with a bottoming back-pressure steam turbine;
• Natural Gas Combined Cycles (NGCC-2) with a bottoming extraction-type steam turbine;
• Auxiliary Boilers (AB) burning natural gas to generate heat;

and a thermal storage for high-temperature heat energy. Since only thermal power is required, the whole
amount of electricity cogenerated by gas turbines and combined cycles is sold to the grid. This scenario
includes units with two degrees of freedom, see Eq. (13) and (14): in GT-2, supplementary fuel can be
burned to increase the amount of recovered heat, and, in NGCC-2, opening the steam extraction valve
reduces the electric power and increases the thermal power. Four different instances are considered (2-a,
2-b, 2-c and 2-d), with, respectively, 5, 4, 12 and 11 (co)generation units. Instances 2-b and 2-d include
also 2-d.o.f. cogeneration units.

Computational experiments were performed, for the MINLP formulations, with the open-source solver
SCIP 3.1.0, while for the MILP formulations IBM Ilog CPLEX 12.6 was used. For the MINLP, we have also
experimented with BARON, whose results are not included for sake of brevity, since its efficiency on the
considered instances was slightly inferior. The tests were carried out on an Intel Xeon with E3125@3.30GHz
CPUs and 16GB of RAM, with a time limit of 2 hours.

Table 1 summarizes the computational results. The MINLP instances turn out to be challenging. SCIP is
able to certify optimality for 2 out of 5, and on 2-c is close to the optimum, while the instances with 2-d.o.f.
units are harder. In comparison, the MILP formulations can be solved to optimality by CPLEX in a few
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Table 1: Optimal values, computing time (seconds) and lower/upper bounds for the MINLP and the approximate MILP with
an increasing number of discretization points (d.p.) per dimension.

2 d.p. 3 d.p. 5 d.p. 9 d.p. 15 d.p. MINLP
time opt time opt time opt time opt time opt time LB UB gap

1-a 0.01 94.33 0.03 91.73 0.06 91.30 0.10 91.17 0.42 91.11 42.58 91.07 91.07 0.0
2-a 0.04 104.17 0.07 102.49 0.10 101.95 0.12 101.86 0.14 101.82 812.8 101.76 101.76 0.0
2-b 0.06 -80.12 0.14 -80.24 1.19 -80.33 4.53 -80.36 34.44 -80.36 7200 -94.36 -71.97 31.1
2-c 0.15 307.01 0.04 302.73 0.09 300.75 0.09 300.51 0.17 300.43 7200 284.83 300.19 5.4
2-d 0.22 121.27 0.29 119.43 0.31 118.20 0.50 118.09 3.43 118.07 7200 -83.01 140.93 ∞

seconds. The MILP solutions are not necessarily feasible for the original formulation, since the approximate
model might overestimate the amount that is generated. However, it is always possible to recover infeasibility
a posteriori by increasing the production level. Interestingly, on our instances all the MILP optimal solutions
are feasible (barring minor numerical errors), as they tend to be on the discretization points.

The results show that the approximate optimal values approach the optimal value of the original formu-
lation as the number of discretization points is increased. The optimal values are significantly different when
the approximation is less accurate – except for instance 2-b, where the variation is small, since the solution
is dominated by a large NGCC-2 unit always at full load.

The structure of the solutions can differ significantly. As an example, we report in Figure 2 two optimal
schedules for a low-temperature heat pump in instance 1-a with a 2-point MILP approximation (left) and
with the MINLP model (right). Although the instance is simple, the structure of the optimal approximate
solution differs from that of the optimal MINLP solution even when the number of discretization points is
increased to 5. To obtain optimal solutions to these two problems that are equivalent, one needs to use at
least 9 discretization points.

5. Concluding remarks

The summarized computational results for two relatively simple scenarios of the short-term operational
planning problem indicate that even small-size instances of the MINLP can be computationally very chal-
lenging. Approximating the nonlinear performance functions with piecewise linear functions is an alternative
that seems to work quite well in practice. For the considered instances, the resulting approximate MILP
models can generally be solved more efficiently than their MINLP counterparts, and they appear to be
already fairly accurate with a few linear pieces.

Attention must be paid to the feasibility of the solutions obtained with the approximations. Indeed, if
the optimal operating point of a unit is far from the approximation discretization points, the piecewise linear
function value might be quite different from the actual value. Underestimating the actual performance value
may lead to suboptimal solutions with more than 3% error, while overestimating it may lead to infeasible
solutions.
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Figure 2: Optimal plan for the heat pump of instance 1-a obtained with a 2-point piecewise approximation (left) and with the
MINLP (right).
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Nomenclature

T : set of time periods (hours)
U : set of all generation units
F : set of units consuming fuel
E : set of units consuming electricity
H: set of units that generate high-temperature heat
L: set of units that generate low-temperature heat
G: set of units that generate electricity
cOM
i : hourly operation and maint. cost for unit i [e]
cSUi : start-up cost for unit i [e]
cfi : unit cost of fuel for unit i [e/kWh]

bt, pt: unit price of electricity bought/sold from/to the
grid at time t [e/kWh]

Fmin
it , Fmax

it : minimum and maximum fuel input for unit
i ∈ F at time t [kWh]

Emin
it , Emax

it : minimum and maximum electricity input
for unit i ∈ E [kWh]

Ni: maximum number of start-ups for unit i
U, V : capacity of low and high-temperature heat storage
[kWh]

α, β: constant loss rate for thermal storage [%]

Dlow
t , Dhigh

t , De
t : demand for low and high-temperature

heat, electricity at time t [kWh]

fit: fuel consumed by unit i ∈ F in period t [kWh]

yit: secondary fuel consumed by unit i ∈ F with post-
firing injection [kWh]

xit: extraction valve opening percentage for combined cy-
cle units [%]

econs
it : electricity consumed by i ∈ E in period t [kWh]

egenit : electricity generated by i ∈ G in period t [kWh]

lit: low-temperature heat generated by unit i ∈ L in pe-
riod t [kWh]

hit: high-temperature heat generated by unit i ∈ H in
period t [kWh]

hdown
t : high-temperature heat downgraded to low-

temperature in period t [kWh]

e+t , e
−
t : electricity bought/sold from/to the grid in period

t [kWh]

ut, vt: high and low-temperature thermal energy stored
at the beginning of period t [kWh]

zit: binary variable, on/off status of unit i in period t
δit: binary start-up variable (δit = 1 if unit i is switched
on at beginning of period t)
ghit, g

l
it, g

e
it: performance functions for unit i at time t
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