
Integration of GPS and Satellite Images for
Detection and Classification of Fleet Hotspots

Francesco Sambo, Samuele Salti, Luca Bravi, Matteo Simoncini, Leonardo Taccari and Alessandro Lori
Fleetmatics Research

via Paisiello 16-20, 50144 Florence, Italy
Email: francesco.sambo@fleetmatics.com

Abstract—Hotspot detection and classification for a fleet of
vehicles is usually performed based on GPS data sampled from
the vehicles. In this paper, we explore how the integration of
satellite images can improve GPS-based hotspot classification.
We propose a system composed of a deep Convolutional Neural
Network (CNN) for image classification and a Random Forest
classifier that combines GPS-based features with the CNN output
for hotspot classification. We introduce also a novel metric for
scoring place detection and classification systems, able to account
for both detection and classification errors. The new metric is
used to assess experimentally the effectiveness of our system in
combining the two sources of information.

I. INTRODUCTION

Fleet management solutions, such as Fleetmatics REVEAL,
rely on on-board GPS tracking devices to monitor the position
of all vehicles of a fleet in real-time; GPS data is used
to provide additional services, such as replay of meaningful
routes, generation of driving reports and raise of alarms. Auto-
mated detection and classification of recurrent stop locations,
or hotspots, is crucial for fleet management, as it provides
invaluable insights into drivers behaviour and fleet operations;
these, in turn, can be translated into a product more tailored
to the customer and smarter in responding to his/her needs.

The discovery of relevant hotspots for a fleet is actually
a two-step problem: detection, i.e. identification of hotspot
location and size, and classification, i.e. association to the
hotspot of a semantic label like home or depot. In the literature,
place detection and semantic classification are mainly studied
for human GPS trajectories [1], [2], [3] and, more rarely, for
commercial vehicles [4]. Hotspot detection is usually accom-
plished by first aggregating nearby subsequent points from the
same track and then clustering nearby points from different
GPS tracks. Hotspot classification, on the other hand, is often
based on a combination of different criteria: ad-hoc rules, such
as the longest stop of the day classified as home or the most
visited location as depot [2], [4], machine learning algorithms
trained on statistics like average duration and arrival time,
computed on single stops or on all the stops that belong to
a hotspot [1], [3], or proximity to points of interest available
in external databases, such as public transportation stops or
shops and restaurants [2], [3].

Given the location of a hotspot, another powerful source
of information on its category is the satellite image of its
close surroundings. The literature on object detection from
satellite images exhibits a growing interest in machine learning

approaches [5] and in the rising paradigm of deep learning [6],
where rich feature representations are automatically learned
from images by means of Convolutional Neural Networks
(CNN, [7]).

In this paper, we explore the integration of GPS data with
satellite images for the classification of the hotspots of a fleet.
As far as we are aware, most of the literature on the integration
of images with GPS data has focussed on increasing the
precision of GPS navigation with on-board vehicle camera
images [8], [9], [10] and no work has yet considered the
integration with satellite images.

To develop our solution, we use a dataset of continuous
GPS monitoring of the whole fleet for 1025 Fleetmatics
customers. To obtain a ground truth on which our models
could be trained, we manually labelled the hotspots of each
customer and classified them among the three classes Home,
representing employees homes, Depot, representing a company
common place such as a vehicles depot or an office, and
Other, comprising recurrent clients of our customers and other
special locations, such as an airport, a school, or a gas station.
Moreover, we also independently labelled the land use of each
hotspot as belonging to two classes: Residential and Non-
residential. Among the possible land uses, we chose residential
use since it can be generally identified from a satellite image
with little ambiguity. For each hotspot, we also included in
the dataset a satellite image of its location and surroundings.

Our classifier consists of two main components: a deep
Convolutional Neural Network, which provides an initial clas-
sification of satellite images into the two land use classes,
and a Random Forest classifier (RF, [11]), which uses the
CNN output, together with several features extracted from
GPS data, to compute the final classification of the hotspots.
An independent subset of fleets is extracted from the whole
dataset before training the system and is used as test set
for performance assessment. Hotspot detection on test data
is obtained by a grid-based partitioning of all the stops of a
fleet, followed by the aggregation of neighbouring cells.

Our algorithm is meant to be highly parallelizable and able
to scale to the size of the Fleetmatics customer base: we
thus resort to Apache Spark [12] as parallel processing engine
for data preprocessing, hotspot detection and Random Forest
classification, and we use the Google Tensorflow library ([13])



and its python wrapper Keras1 for CNN classification.
Another major contribution of the present paper is an end-

to-end performance measure for place detection and classifi-
cation systems, based on the Matthews Correlation Coefficient
[14] and meant to penalise both misclassification errors and
detection errors, such as imperfect overlaps between ground
truth and detected hotspots. The score is designed to cope
with the limitations of the other approaches to the evaluation
of place detection and classification systems, such as separate
evaluation of detection and classification [3] or evaluation of
the entire system in terms of classification accuracy alone [1].

Experimental results show that our system is indeed able to
effectively combine the information originating from GPS data
and satellite images, outperforming the classifier built on GPS
data alone. Furthermore, we demonstrate the effectiveness of
our new performance measure by studying different variants
of our hotspot detection procedure and by comparing them
with the ideal case of ground truth detection.

The paper is organised as follows: Section II presents the
dataset we used to build and validate our system, Section III
describes in detail the different components of the system, Sec-
tion IV introduces our novel performance measure, Section V
shows experimental results and Section VI draws conclusions
and future directions.

II. DATASET

To develop our system, we collected 15 days of GPS data for
1,025 Fleetmatics US customers, for a total of 11,668 vehicles
and 869,574 GPS stops, i.e. time intervals between an engine
off event and the subsequent engine on. Each stop consists of
the vehicle position, as a longitude-latitude pair, and of the
time stamps of the engine off and on events.

To define ground-truth data, we automatically detected can-
didates hotspots, for each fleet, as all places with a cumulative
stop duration of at least 20 hours across the fleet in the two
weeks. We then manually classified candidates among the
classes Home, Depot and Other by visual inspecting the stop
patterns, the vehicles routes and the location via Google Maps
and Google Street View. The total number of hotspots for each
class is 4,394 for Home (49%), 1,311 for Depot (15%), and
3,238 for Other (36%).

The set of fleets was then randomly split, excluding 205
fleets (20%) from further analyses and keeping them as an
independent test set, meant to assess the performance of our
system.

III. METHODS

Our procedure for hotspot detection and classification is
represented in Figure 1. For each ground truth hotspot in the
training set, we download a satellite image using the Google
Static Maps API, centered in the hotspot center and with
256 × 256 pixels at zoom level 18. Images are further split
into a train set (615 fleets) and a validation set (205 fleets)
and used to train a CNN.

1https://keras.io/

Train Test

GPS data

Image 
retrieval

Ground-truth
hotspots

RF 
training

GPS data

Feature 
extraction CNN 

training

RF 
model

Images

CNN 
model

Hotspot detection

Image 
retrieval

Images

Hotspots

Feature 
extraction

Classification

15 features 15 features

Residential land-useResidential land-use

Fig. 1. Architecture of the hotspot detection and classification procedure.

For the test set, we run the hotspot detection procedure
described in the next section and then retrieve the satellite
images centered in the detected hotspots. The CNN model is
used to compute, both for ground truth hotspots in the train
set and for detected hotspots in the test set, the probability of
being to the Residential land use class. In parallel, the ground-
truth hotspots and the GPS data train set are used to extract
a set of GPS-based features, as described in Section III-C.
The features are used, together with the output probability of
the CNN on the training images, to train a Random Forest
classifier, which then processes the test set and outputs the
final hotspot classification. All the components are explained
in more detail in what follows.

A. Hotspot detection

To detect the hotspots of a fleet starting from the GPS stops
of all the fleet vehicles, we designed the following procedure.

1) Group stops into cells, defined by a regular longitude ×
latitude grid with spacing s degrees.

2) For all cells, compute the cumulative stop time, i.e. the
total stop time spent in the cell by all the vehicles of
the fleet, and retain all cells with cumulative stop time
larger than or equal to tcell as initial hotspots.

3) For a number of iterations itaggr , aggregate pairs of
adjacent hotspots into larger hotspots, of rectangular
shape and with boundaries defined by the minimum and
maximum latitude and longitude of the two aggregated
hotspots.

4) For all resulting hotspots, compute again the cumulative
stop time and retain as final hotspots the ones with
cumulative stop time larger than or equal to taggr .

We choose to adopt this solution, similar to [4] and as op-
posed to more complex clustering approaches [1], [3], because
it is highly parallelizable and it yields sufficiently good results
on our data, as shown in Section V. Based on an exploratory
analysis of their effect on the final classification performance
(not reported), the parameters were set to s = 0.0008 degrees
(yielding initial cells of about 80× 80 meters at US latitudes),
tcell = 8 hours, itaggr = 3 and taggr = 20 hours.



3

64

64

64
1

128

128

3

3
3

3

Dense

Dense

Image
Convolution 3 x 3
Max pooling 2 x 2

61
3

3

63

63

3

3

30

30

128

14

14
3

3

Convolution 3 x 3
Max pooling 2 x 2 Convolution 3 x 3

Max pooling 2 x 2

Fig. 2. Layers and parameters of the convolutional neural network.

B. Image classification with convolutional neural networks

We perform satellite image classification by means of a
convolutional neural network. Many of our architectural and
algorithmic design choices follow closely the ones suggested
in [6], which reports best practices and state of the art results
for satellite image classification with Convolutional Neural
Networks. However, we add to the model suggested in [6]
some further improvements, drawn from the recent literature
on deep learning, such as PReLU activation functions [15] and
the Adam training algorithm [16].

The architecture we choose, represented in Figure 2, con-
sists of three 2D convolutional blocks, followed by a dense
hidden layer and a dense output layer. The input to the
networks is a 128×128 color image with the 3 RGB channels.
Each convolutional block consists of:

1) A convolutional layer [17], with kernels of 3× 3 pixels,
stride of 1 pixel and multiple channels (64 in the first
two blocks, 128 in the third);

2) A non-linear activation function, in the form of a Para-
metric Rectified Linear Unit (PReLU, [15]);

3) A max-pooling layer, of size 2× 2 and stride 2.
The output of the third convolutional block is flattened and

fed to a dense hidden layer, with 64 neurons and PReLU
activation function, and this in turn is the input to an output
layer with one neuron and sigmoid activation function.

The activation function we choose, the Parametric Rectified
Linear Unit, an extension of the most commonly adopted
ReLU, has recently allowed deep networks to surpass human
level performance on the ImageNet 2012 classification dataset
[15]. The PReLU activation function is defined as:

f(yi) =

{
yi, if yi > 0
aiyi, if yi ≤ 0

, (1)

where yi is the input of the nonlinear activation f on the
i−th channel and ai is a coefficient controlling the slope of
the negative part, whose value is learned during training. The
original ReLU, which outputs a flat 0 for yi ≤ 0, is indeed
made parametric by the ai coefficients. As suggested in [15],
we initialize all ais to 0.25 before training.

In line with the literature on binary classification problems,
we choose binary entropy as loss function. To train the net-
work, we adopt the common approach of Stochastic Gradient

Descent (SGD), which partitions the training data in random
sub-samples, known as minibatches, and iteratively adjusts
the network weights according to the gradient of the loss
function in each minibatch, cycling through the entire dataset
for several times, or epochs. We choose a variant of the SGD
algorithm known as Adam, which maintains different learning
rates for the network weights and adjusts them adaptively,
based on estimates of the first and second moments of the
gradients [16]. Two free parameters of the Adam algorithm,
namely the step size and the minibatch size, were tuned based
on classification performance in the validation set and then
fixed to 5× 10−5 and 8, respectively; all the other parameters
were left as default. We also use dropout, which reduces the
risk of overfitting by ignoring a random sample of 50% of the
nodes in each iteration [18].

Before being fed to the network, images undergo several
pre-processing and augmentation steps:

1) rotation with a random angle, uniformly sampled be-
tween ±45 degrees,

2) shift of height and width with random ranges, uniformly
sampled between ±20% of the image size,

3) zoom with a random range, uniformly sampled between
±0.2,

4) random horizontal flip, with probability 0.5,
5) rescaling of all pixels between 0 and 1,
6) subtraction of the mean value of each pixel across the

training dataset,
7) resizing to 128× 128 pixels.

Random transformations 1 to 4 are augmentations of the
original image set, meant to increase the generalization ability
of the trained classifier. Rescaling (5) and mean shift (6) yield
a more stable gradient descent and resizing to a smaller image
(7) leads to a model with fewer parameters. Several configura-
tions of random perturbations have been tried in an exploratory
analysis (not reported) but these are the ones leading to the
best generalization performance on the validation set.

The validation set is also used to control overfitting, a known
Achilles’ heel of neural networks: the network is trained for
a total of 200 epochs and, at the end of each epoch, it is
used to process the validation set and to assess classification
performance by means of the Matthews Correlation Coefficient
(MCC, see Experimental Results for the definition). The best
network is chosen as the one with the maximum MCC on the
validation set.

C. Feature extraction from GPS data

For all the fleets in the training and test sets, we aggregate all
stops falling within the ground truth hotspots (for the training
set) and the detected hotspots (for the test set) and use them
to compute the following features of each hotspot:

• average number of stops per day,
• percentage of fleet vehicles that stop at least once in the

hotspot,
• mean and standard deviation of stop durations,
• maximum and minimum stop duration,



• average cumulative stop duration per day,
• percentage of overnight stops,
• area and aspect ratio (height/width) of the hotspot bound-

ing box,
• mean spatial density (number/area) of stops per day,
• percentage of stops starting or ending in one of two

specific times of the day (morning, i.e. from 5 AM to
2 PM, and afternoon/evening, i.e. from 2 PM to 11 PM),

for a total of 15 GPS-based features.
We have been inclusive in the choice of GPS features since

we use them to train Random Forests, which are automatically
able to select the most relevant features for the classification
task. In Section V, we use the learned Random Forest to
provide an a posteriori ranking of the features in term of their
usefulness for classification.

D. Random Forest classification

A Random Forest classifier [11] is trained on the hotspots of
the fleets in the the train set, with the 15 GPS-based features
plus the Residential land use probability estimated by the
CNN, as explained in the previous sections. We choose the
Random Forest implementation from the Apache Spark MLlib
library2, which uses Gini impurity to estimate the gain of
possible splits during classification tree growth and samples√
m features for each tree, where m is the total number of

features.
We choose to not limit the number of instances per node

and the minimum gain required for a split, using only the
maximum tree depth and the number of trees in the forest
to control the model complexity. Five-fold cross-validation on
the train set is used to tune the two parameters, choosing the
combination of values which yields the highest macro-average
[19] MCC on the five test folds. The optimal parameter values
are thus estimated as 200 trees with maximum depth 20 for
the complete RF and 300 trees with maximum depth 10 for a
simpler version that uses only the GPS-based features.

IV. PERFORMANCE MEASURE

Due to the high unbalance between the classes in our
dataset, we choose as performance measure the Matthews Cor-
relation Coefficient (MCC, [14]). Originally defined for binary
classification problems, the MCC requires the indication of a
positive and a negative class and, starting from the counts of
true positives (tp), true negatives (tn), false positives (fp) and
false negatives (fn), it is computed as:

MCC =
tp · tn − fp · fn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
(2)

The MCC is especially useful for classification problems with
high class imbalance: it lies between -1 (worst performance)
and +1 (best performance) and equals 0 in case of majority
classification (a particularly undesired but frequent pitfall
of training a classifier on imbalanced data). Compared to
other measures that are frequently used with class imbalance,

2https://spark.apache.org/mllib/

H4

H1

H3
H2

H5D4

D3 D1

D2

O2
O1

O3

Detected hotspot Ground truth 
hotspot

Stop

Fig. 3. Examples of detected and ground-truth hotspots.

TABLE I
EXAMPLE OF CONFUSION MATRIX

Classification H1 H2 H3 D1 D2 O1 out
Ground truth

H4 8 0 0 0 0 0 2
H5 0 6 4 0 0 0 0
D3 0 0 0 8 0 0 3
D4 0 0 0 6 0 0 0
O2 0 0 0 0 10 0 0
O3 0 0 0 0 0 8 0
out 1 0 0 0 0 2 17

such as Precision and Recall, MCC has the added value of
condensing all four counts tp, fp, tn and fn in a single aggregate
measure [14]. A common extension of the MCC to the multi-
class case is the macro-average approach [19], where each
class in turn is considered as positive and all the other classes
as negative, MCC is computed in each case and then averaged.

For the training phase of both the CNN and the RF, we
consider hotspots as atomic samples to be classified, i.e. when
computing the MCC, every hotspot can be a true positive, false
positive, etc. For the testing phase, which involves also hotspot
detection starting from GPS stops, we consider each stop as
an atom and design a metric on top of the MCC that can
capture and penalize mistakes in hotspot detection. We dub
this measure Detection and Classification MCC (DCM). To
introduce the measure, we will refer to the confusion matrix
in Table I as a running example, where each row represents
a ground truth hotspot, belonging to class home (H), depot
(D) or other (O), plus out for the stops falling out of each
ground truth hotspot, each column represents the detected
and classified hotspots and each cell counts the number of
stops falling in the intersection between the ground truth and
the detected hotspot. A graphical representation of the same
running example is given in Fig. 3.

For each class C, we define as true positives all stops that lie
both in a detected hotspot classified as C and in a ground truth
hotspot of class C, false positives all stops within detected
hotspots of class C but not in ground truth hotspots of class
C, and so forth for false negatives and true negatives. In our
running example for class O, 8 stops lie in the intersection



between detected hotspot O1 and ground truth hotspot O3
(element at column O1 and row O3 in Table I), so tp equals
8; 2 stops are in O1 but not in O2 or O3 (sum of all elements
in column O1 excluding rows O2 and O3), so fp is 2; all stops
in O3 are also in O1, but O2 is misclassified ad Depot, so the
10 stops in it count as fn; all the remaining 55 stops do not
lie in hotspots of class O (sum of all elements not in column
O1 or rows O2 and O3), so tn is 65.

In order to penalize multiple detected hotspots intersecting
the same ground truth hotspot, like detected homes H2 and
H3 with ground truth home H5 in Fig. 3, in each row of
the confusion matrix we divide the positive counts, i.e. the
counts of hotspots belonging to the correct class, by the
number of nonzero positive counts in the confusion matrix
before summing true positives. In the example for class H , tp
will then be the sum of 8 for hotspot H1, 6/2 for H2 and
4/2 for H3. A similar penalty is applied to detected hotspots
intersecting multiple ground truth hotspots. As an example,
the detected depot D1 intersects two ground truth depots D3
and D4, so tp for the class D will be 8/2 + 6/2 = 7.

Given the confusion matrices computed according to the
outlined algorithm, we define the DCM as the macro-averaged
MCC across the confusion matrices.

V. EXPERIMENTAL RESULTS

Figure 4a reports boxplots of the macro-average DCM on
the 205 fleets in the test set, comparing simple Random
Forest with just the GPS-based features and complete Random
Forest including also the Residential land use estimated by
the CNN. As it is clear from the figure, the simple Random
Forest already exhibits a quite good performance, with median
macro-average DCM of 0.854. However, when information
on the land use from the CNN is taken into account in the
complete Random Forest, the performance further improves,
reaching a median value of 0.898 for the macro-average DCM
while the DCMs distribution shifts towards higher scores. The
improvement is statistically significant, with a p-value of 0.009
for a Wilcoxon signed rank test.

Figure 4b further explores the test DCM obtained by the
complete Random Forest on each separate class. The best and
most consistent classification performance is obtained on the
Depot and Home classes, with median DCMs of 0.982 and
0.969 and inter-quantile ranges of 0.094 in both cases. For
the Other class, the median DCM is equal to 0.825, but the
distribution is much more spread towards lower DCMs, with
and inter-quantile range of 0.44.

A posteriori feature ranking from the learned random forest
is accomplished as suggested in [20], accumulating for each
feature the improvements in Gini impurity obtained during
training by splitting on it. The most useful features emerged as
the average cumulative stop duration per day and the fraction
of overnight stops, followed by the average number of stops
per day, and the percentages of stops starting in the morning
and in the afternoon. The CNN output (Residential land use)
ranks 6th, before all the remaining GPS features: this confirms

TABLE II
AWS INSTANCES AND EXECUTION TIME FOR THE DIFFERENT

COMPONENTS OF OUR SYSTEM

Phase Instance Execution time
Hotspot detection m4.2xlarge 18s
CNN training p2.xlarge 2h 40m
CNN prediction p2.xlarge 1m 56s
GPS feature extraction m4.2xlarge 25s
Random Forest training m4.2xlarge 61s
Random Forest prediction m4.2xlarge 5s

its usefulness in providing complementary evidence to GPS
data to correctly classify the hotspot.

By leveraging the ability of the proposed metric to com-
pare end-to-end performance of different pipelines, Figure 4c
compares our hotspot detection procedure (central boxplot),
consisting in grid-based partitioning of stops into rectangular
cells followed by aggregation of adjacent cells, with a simpler
approach comprising only grid-based clustering (left boxplot)
and with the theoretical maximum DCM obtainable with our
classifier by using ground truth for hotspot detection. As it is
clear from the figure, aggregation of neighboring cells greatly
improves simple grid-based clustering, raising the median
DCM from 0.749 to 0.898, but additional improvements of
the clustering procedure could allow it to grow further and
reach its theoretical limit of 0.956.

All the experiments were run on two machines, an Amazon
EC2 m4.2xlarge instance with 8 2.3GHz Intel Xeon E5-
2686v4 processors and 32GB of RAM, for the computations
under the Apache Spark environment (hotspot detection, GPS
feature extraction and Random Forest classification), and an
Amazon EC2 p2.xlarge instance with 4 Intel Xeon E5-2686v4,
an NVIDIA K80 GPU and 61GB of RAM, for image pro-
cessing and CNN classification. Table II reports the machine
used and the execution time for the different components of
our system: the vast majority of computational time is taken
by training the CNN (2h 40m), but once training is over the
complete process of hotspot detection and classification for
the 205 test fleets takes a total of 2m 44s.

VI. CONCLUSION

In this paper, we introduced a novel approach to the detec-
tion and classification of hotspots for fleets of vehicles, based
on the integration of GPS data sampled from the vehicles with
satellite images of the hotspot. As components of our system,
we chose two state-of-the-art classifiers and combined them
effectively, indeed improving the classification performance
on our test data.

Experimental results, however, show that classification per-
formance is quite different across the three classes Home,
Depot, and Other, with the classifier being much more effective
on the former two than on the latter. The reason for this
probably lies in the different levels of homogeneity within
each class: employees homes and fleet depots tend to be better
defined and less heterogeneous, in terms of both visit patterns



-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

M
a

c
ro

-a
v
e

ra
g

e
 D

C
M

RF RF+CNN

(a)
-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

D
C
M

Home Depot Other

(b)

-0
.2

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

M
a

c
ro

-a
v
e

ra
g

e
 D

C
M

Grid Aggregation GT

(c)

Fig. 4. Boxplots of DCM across the 205 fleets in the test set. 4a: macro-average DCM of simple RF without the CNN output and complete RF including
the CNN output. 4b: DCM on the three separate classes of the complete RF model. 4c: macro-average DCM of the complete RF model with three types of
hotspot detection, namely simple grid partitioning in cells, grid partitioning followed by adjacent cell aggregation, and ground truth detection.

and visual appearance, than all the remaining hotspots falling
in the Other class.

A further contribution of the paper is the introduction
of a novel performance measure, based on the Matthews
Correlation Coefficient, which allows us to account for both
detection and classification errors in the evaluation of our
system and which could effectively be used in several other
problems of object detection and classification. By means of
our new performance measure, we assessed the effectiveness
of our simple hotspot detection procedure, but also evidenced
that there is room for improvement.

Indeed, one of the possible future directions of this work
is to explore the best way to apply state-of-the art clustering
approaches, such as DBSCAN [21], in our parallel processing
framework, while retaining the high level of scalability of the
present solution. We also plan to explore alternative ways
to integrate the Random Forest and CNN classifiers and
assess the potential of adding other sources of information
to the system, such as additional land use classes [6] or
places of interest [3], gathered from public databases such
as Foursquare, Open Street Map or Google Maps.

REFERENCES

[1] L. Montini, N. Rieser-Schüssler, A. Horni, and K. Axhausen, “Trip pur-
pose identification from GPS tracks,” Transportation Research Record,
no. 2405, pp. 16–23, 2014.

[2] K. Siła-Nowicka, J. Vandrol, T. Oshan, J. A. Long, U. Demšar, and A. S.
Fotheringham, “Analysis of human mobility patterns from gps trajecto-
ries and contextual information,” International Journal of Geographical
Information Science, vol. 30, no. 5, pp. 881–906, 2016.

[3] M. Lv, L. Chen, Z. Xu, Y. Li, and G. Chen, “The discovery of personally
semantic places based on trajectory data mining,” Neurocomputing, vol.
173, Part 3, pp. 1142–1153, 2016.

[4] K. Gingerich, H. Maoh, and W. Anderson, “Classifying the purpose
of stopped truck events: An application of entropy to GPS data,”
Transportation Research Part C: Emerging Technologies, vol. 64, pp.
17 – 27, 2016.

[5] G. Cheng and J. Han, “A survey on object detection in optical remote
sensing images,” ISPRS Journal of Photogrammetry and Remote Sens-
ing, vol. 117, pp. 11 – 28, 2016.

[6] Y. Zhong, F. Fei, Y. Liu, B. Zhao, H. Jiao, and L. Zhang, “SatCNN:
satellite image dataset classification using agile convolutional neural
networks,” Remote Sensing Letters, vol. 8, no. 2, pp. 136–145, 2017.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444.

[8] C. Rose, J. Britt, J. Allen, and D. Bevly, “An integrated vehicle
navigation system utilizing lane-detection and lateral position estimation
systems in difficult environments for GPS,” IEEE Transactions on
Intelligent Transportation Systems, vol. 15, no. 6, pp. 2615–2629, 2014.

[9] J. Bao, Y. Gu, L.-T. Hsu, and S. Kamijo, “Vehicle self-localization
using 3D building map and stereo camera,” in IEEE Intelligent Vehicles
Symposium, Proceedings, vol. 2016-August, 2016, pp. 927–932.

[10] J. Lim, K. Choi, J. Cho, and H. Lee, “Integration of GPS and monocular
vision for land vehicle navigation in urban area,” International Journal
of Automotive Technology, vol. 18, no. 2, pp. 345–356, 2017.

[11] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[12] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust et al., “Apache
spark: A unified engine for big data processing,” Commun. ACM, vol. 59,
no. 11, pp. 56–65, 2016.

[13] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen et al., “Ten-
sorflow: Large-scale machine learning on heterogeneous distributed
systems,” arXiv preprint arXiv:1603.04467, 2016.

[14] P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen, and H. Nielsen,
“Assessing the accuracy of prediction algorithms for classification: an
overview,” Bioinformatics, vol. 16, no. 5, p. 412, 2000.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proc. of the 2015 IEEE International Conference on Computer Vision
(ICCV). IEEE Comp. Soc., 2015, pp. 1026–1034.

[16] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from overfit-
ting,” Journal of Machine Learning Research, vol. 15, pp. 1929–1958,
2014.

[19] Y. Yang, “An evaluation of statistical approaches to text categorization,”
Information retrieval, vol. 1, no. 1-2, pp. 69–90, 1999.

[20] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning, 2nd ed. Springer, 2009.

[21] L. Gong, H. Sato, T. Yamamoto, T. Miwa, and T. Morikawa, “Identi-
fication of activity stop locations in GPS trajectories by density-based
clustering method combined with support vector machines,” Journal of
Modern Transportation, vol. 23, no. 3, pp. 202–213, 2015.


