
Classification of crash and near-crash events from
dashcam videos and telematics data

Leonardo Taccari, Francesco Sambo, Luca Bravi, Samuele Salti
Leonardo Sarti, Matteo Simoncini, Alessandro Lori

Verizon Connect
via Paisiello 16-20, 50144 Florence, Italy

Email: leonardo.taccari@verizonconnect.com

Abstract—The identification of dangerous events from sensor
data is a fundamental sub-task in domains such as autonomous
vehicles and intelligent transportation systems. In this work,
we tackle the problem of classifying crash and near-crash
events from dashcam videos and telematics data. We propose a
method that uses a combination of state-of-the-art approaches
in computer vision and machine learning. We use an object
detector based on convolutional neural networks to extract
semantic information about the road scene, and generate video
and telematics features that are fed to a random forest classifier.
Computational experiments on the SHRP2 dataset show that
our approach reaches more than 0.87 of accuracy on the binary
problem of distinguishing dangerous from safe events, and 0.85
on the 3-class problem of discriminating between crash, near-
crash, and safe events.

I. INTRODUCTION

In recent years, the diffusion of connected vehicles and
the push for autonomous vehicles has led to an enormous
increase in the kind and amount of data that can be collected
from a vehicle. Vehicles can be remotely monitored with fleet
management solutions for commercial purposes, or for safety
or insurance reasons in consumer vehicles. In particular, nowa-
days most connected vehicles include not only the standard
telematics sensors, such as accelerometers and gyroscopes, but
also video cameras and other sensors such as radar or lidar.
The availability of this kind of data spurs the investigation
of new accurate method of analyzing and understanding the
semantics of road scenes in video footage, and fusing this
knowledge with data from other sensors.

Identifying dangerous situations in driving behaviors, with
the aim to prevent their occurrence and provide a post-hoc
review mechanism, is a problem at the very core of intelligent
transportation systems research. Given vehicle data collected
from on-board sensors, the problem of crash and near-crash
event identification calls for the detection and classification of
the severity of the driving events involving the ego vehicle,
i.e., the vehicle where the sensors are mounted.

The identification of crash and near-crash events is actually
a two-step problem: it involves the detection of significant
events, and their classification, i.e., the association of a
semantic label that represents the type or severity of the
event. In this article, we focus specifically on the problem
of classifying driving events from videos collected by a front-
facing dashboard camera (dashcam) and telematics data.

In the literature, road activity recognition and accident
detection from videos has been mainly studied in still images
or videos from surveillance cameras. The work in [1] proposes
an algorithm based on Markov random fields to recognize
behavior patterns for vehicles appearing in traffic images at
intersection. A similar context is considered in [2], where
the authors present a vision-based crash detection algorithm
and a system for recording and reporting traffic accidents at
intersections. In [3], the problem of classifying still images
at intersections into a set of atomic scenes is investigated.
Of particular interest is the work in [4], where the authors
consider the problem of anticipating accidents from dashcam
videos. The method they use is based on recent deep learning
techniques: specifically, they use an object detection algorithm
followed by a recurrent spatio-temporal attention mechanism
that points, for each time step, to the object(s) most likely
to be involved in a crash. Although the videos are collected
from on-board dashcams, this work is again focusing on
events involving third-party subjects only. Considering other
kinds of data, in [5] traffic accident detection is tackled from
mobile phone sensors, such as accelerometers and acoustic
data. Another work that aims at integrating data from multiple
on-board sensors is the one in [6], where the authors present
an analysis framework based on a deep learning solution to
classify distracted driving behavior from an interior-facing
camera and telematics data.

In this paper, we use a set of manually annotated events from
the SHRP2 dataset [7] as the source of ground truth labels for
classification of crash, near-crash or safe events occurring to
the ego vehicle. Our procedure consists of a sequence of steps
that lead to the extraction of a rich set of high-level features.
Then, we use a Random Forest classifier (RF, [8]) to combine
the features from the video domain and from the telematics
data, and classify the event. Experimental results show that
our system is able to classify effectively crash, near-crash and
normal events.

The paper is organized as follows: Section II presents the
dataset we used to build and validate our system, Section III
describes in detail the different components of the system,
Section IV shows experimental results and Section V draws
conclusions and future research directions.

II. DATASET

To develop and validate our method, we use a dataset
extracted from the Second Strategic Highway Research Pro-
gram (SHRP2) Naturalistic Driving Study database [7], which
originates from a research effort coordinated by the Virginia
Tech Transportation Institute. The participants of the study are
more than 2000 drivers recruited in six sites across the U.S.
(Indiana, Pennsylvania, Florida, New York, North Carolina,
Washington). The entire database contains more than 5 million
trip files, with data from multiple on-board sensors, such as
front and interior-facing cameras, accelerometer, and radar.

In this article, we concentrate on events that were auto-
matically detected with a set of trigger algorithms based on
telematics sensor data, followed by a manual validation by
human annotators [7]. For each detected event, the SHRP2
dataset contains a video and a stream of telematics data for
a 30 second segment, as well as the timestamp of start and
end of the actual event. The event always starts at the 20th
second, while the end typically occurs a few seconds later.
The videos have a framerate of 15 frame per second and a
480×356 resolution, while the telematics data contains instant
speed and 3-axis acceleration data sampled at 10Hz.

Of all the detected events in SHRP2, our subset contains
280 crash events, 6755 near-crash events, and 4082 baseline
videos, that were labeled as safe events. According to the
definitions in [7], crash events are defined as “events that
involve any contact of the subject vehicle with an object,
either moving or fixed, at any speed in which kinetic energy is
measurably transferred or dissipated”. On the other hand, near-
crash events are defined as “any circumstance that requires a
rapid evasive maneuver by the subject vehicle, or any other ve-
hicle, pedestrian, cyclist, or animal, to avoid a crash”. A rapid
evasive maneuver can involve steering, braking, accelerating,
or any combination of control inputs. Finally, the baseline,
safe videos may contain “any incident or manoeuvre within
the bounds of normal driving behaviors and scenarios that is
accurately represented by the telematics data. The driver may
react to situational conditions and events, but the reaction is
not evasive and the situation does not place the subject or
others at elevated risk”.

It is worth stressing again that the safe events are not ran-
domly selected: indeed, they were detected by the automatic
SHRP2 trigger algorithms, and only later discarded by the
human annotators based on visual inspection. They contain
non-risky driving, but typically with mild to strong braking or
acceleration.

III. METHODS

Our procedure for harsh event classification is represented in
Figure 1. For each candidate event, we apply a Convolutional
Neural Network model [9] to detect relevant road objects in
each frame of the video, and we compute a dense optical
flow for each two consecutive frames. Then, we run a pipeline
that computes a set of intermediate features, that are passed
to the feature extractor. Additional groups of features are
extracted also directly from the optical flow vectors and from

the telematics data. Finally, the full set of features is used, on
the training set, to train a Random Forest model according to
the ground truth labels derived from the SHRP dataset. The
trained RF can then be used to predict the class of an event
on test data.

Video Telematics data

YOLOv3
Dense

optical flow

Road scene
pipeline

Feature
extraction

Random forest
classifier

Prediction

Fig. 1. Diagram of the classification procedure.

A. Object detection with convolutional neural networks

We perform object detection by means of a state-of-the-art
convolutional neural network architecture. We use a modified
version of YOLOv3 [10], trained on the COCO [11] dataset,
but only used to predict bounding boxes for objects belonging
to the following 8 classes:
• car
• truck
• bus
• motorbike
• bicycle
• person
• traffic light
• stop sign.
The input to the network is a square color image with the

3 RGB channels. The architecture of YOLOv3 consists of a
sequence of 53 convolutional layers [12], with some shortcut
connections as in residual networks [13], to let the gradient
propagate more easily. Each convolutional block consists of:

1) A convolutional filter with kernel of size 3×3 or 1×1;
2) A non-linear activation function, namely a Leaky Rec-

tified Linear Unit [14], which is defined as

φ(x) =

{
x if x ≥ 0

0.1x if x < 0;

3) A max-pooling layer, of size 2× 2 and stride 2.

Fig. 2. Example of the output of YOLOv3 416 × 416 object detection on
an image depicting a road scene. The detector is quite accurate, but a few
mistakes can be noticed: for instance, a car on the left (partially occluded) is
not detected.

The prediction is then carried out at 3 different scales
thanks to a number of final upsampling convolutional layers,
similarly to the idea of feature pyramid networks [15], that
are instrumental in improving the classification of objects of
very different scale.

The output of YOLO on a video is a set of categorized
bounding boxes for each frame. Each bounding box is identi-
fied by a center location (x, y), width and height (w, h), and
a confidence c, that is an estimate of Pr(Classi) · IOU truth

pred ,
i.e., the probability of belonging to a given class weighted by
the Intersection Over Union (IOU) of the ground truth and
the prediction. We recall that the IOU between two bounding
boxes is defined as the area of the intersection divided by the
area of the union.

The choice of YOLOv3 is due to its being arguably
the fastest object detection architectures with state-of-the-art
performance on the major object detection benchmarks. In
particular, we chose the YOLOv3 architecture with a 416×416
resolution input, that runs at 35 FPS on a Nvidia Titan X
GPU. We opted not to use the higher-resolution version of
the network (608 × 608), since it is significantly slower and
the videos in our dataset have a resolution of 480 × 356.
However, with higher resolution videos, we believe that using
the more powerful network architecture could bring about an
improvement in the detection, with a bottom line improvement
of the performance of our overall algorithm, since the accuracy
of the object detection sub-task is crucial in obtaining good
results.

B. Dense optical flow

As customary in tasks that involve recognition of structure
and action from the motion of objects across multiple frames,
we compute a dense optical flow for each two consecutive
frames to extract features that help in our classification task.

Optical flow can be broadly defined as the pattern of
apparent motion of objects between consecutive frames due to
the movement of the camera or the objects themselves. Given
two consecutive frames at time t − 1 and t, we compute a
dense optical flow, that is a vector field V (t) that contains, for
each pixel of the first frame, a displacement vector v ∈ R2

Fig. 3. Example of optical flow between two consecutive frame. The hue
of a pixel denotes the direction of the flow in that point, while the intensity
encodes its magnitude. A bus and a car can be seen on the left and on the
right of the image, respectively.

that represents the movement of such pixel from the first
frame to the second. We use Farnebäck’s algorithm [16], as
implemented in OpenCV. Our use of the dense optical flow is
twofold:
• we directly exploit it to estimate the vanishing point of

the image and construct the collision cone of the ego
vehicle, as we will explain in more detail in the following
paragraph;

• we extract from it a number of features that we use within
the random forest classifier.

An example of dense optical flow can be seen, color-coded,
in Figure 3.

C. Road scene pipeline

Once we have computed, for each frame t, a set of bounding
boxes from the detection algorithm, and an optical flow field
V (t) from t − 1 to t, we process the data with the aim of
extracting the time-to-contact of the objects in each frame, and
whether they are on a collision course with the ego vehicle.
We proceed as follows:

1) We perform object tracking across frames starting from
the YOLO detections. Multiple object tracking is a
very challenging problem per se [17], and most ad-
vanced tracking methods are sophisticated and com-
putationally heavy. We choose to adopt the following
simple and efficient procedure, based on a bipartite
graph matching formulation of the problem, where we
greedily match the objects tracked so far with the
detections in the successive frame. The algorithm is
initialized by assigning a unique object id j to each
detection i in the first frame with confidence ci ≥ 0.6.
Then:

for t = 2 to T do
Compute a matching between the detections in
frame t and the objects in frame t− 1
Assign to each matched detection i the object id j
of its matched object
Assign to each unmatched detection i with ci ≥ 0.6
a new unique id j

Discard all remaining detections in frame t
end for

The greedy matching iterates through the set of candi-
date pairs in order of IOU value between the tracked
objects in frame t − 1 and the detections in frame t,
subject to the following constraints: each object in frame
t−1 is matched with at most one detection in frame t; a
detection can only be matched to an object of the same
class; a match can only occur with a IOU greater than
a threshold θ = 0.2.

2) We apply a low-pass filter over time on the bounding
boxes of each tracked object. This is necessary to reduce
the imprecision due to the imperfect localization of the
boxes by the object detector – we recall that the object
detection algorithm is trained on single images, and runs
on each frame independently.

3) We determine the time-to-contact (TTC) for each tracked
object. The time-to-contact can be defined as TTC = Z

v ,
where Z is the actual distance of the object from the
ego vehicle and v is the current speed, that is assumed
to be locally constant. Both values are unknown, but
exploiting the speed formulas derived in [18], given a
pair of frames, the TTC can be expressed as

TTC =
∆t

s
,

where ∆t is the time difference between the two frames,
and s is the scale change of the bounding box, that can
be computed as:

s =
w − w′

w′

being w and w′ the width of the box in the two frames.
The scale of change could be computed either with
the height or the width of the boxes; indeed, in our
implementation we use the smallest scale variation of
the two dimensions, to reduce artifacts due to occlusions.
The TTC is computed only on objects that have appeared
for at least ∆t seconds.

4) We use a RANSAC-based procedure to estimate the
vanishing point as a robust average of the intersection
points of randomly sampled optical flow vectors. Then,
we compute the collision cone of the ego vehicle as
the cone connecting two points at the base of the video
with the vanishing point. This is done to estimate the
part of the frame which is interested by the passage of
the ego vehicle. The width of the base of the cone is
tuned experimentally.

5) For each tracked object, we estimate if its trajectory will
potentially collide with the ego vehicle based on a simple
motion model. To do so, we compute a displacement
vector at time t with respect to 15 frames in the past
for each corner of the bounding box and we multiply
these vectors by a scalar parameter which we have tuned
experimentally. These vectors are used to translate the
corners, thus the object, to a predicted future position. If
the predicted bounding box enters the collision cone, we

Fig. 4. Example of the output of the road scene pipeline.

flag the object at time t as being on a collision course
with the ego vehicle. This binary flag will then be used
to extract high-level features for the classifier.

The results of the procedure are a number of semantic
annotations for each frame of the video. In Figure 4, we
report an example of a frame automatically annotated with the
output of our pipeline. All the objects displayed in the image
have a progressive id assigned by the tracking procedure. The
number on the bottom left of each box is the estimated time-
to-contact (TTC), when available. For objects that are moving
away, we show the value max. The TTC value is also encoded
in the color of the bounding (green = high, red = small). The
arrows on the bottom corners of a bounding box represent
the trajectory estimated with our motion model. Note that
the truck on the left has a relatively small TTC since it is
nearing the ego vehicle, but is correctly marked as not being
on a collision course (the trajectory arrows point outside of
the collision cone).

For sake of compactness, we have omitted to describe
in detail other minor corrections that are useful to enhance
the accuracy of the TTC estimate and motion prediction.
Among them, we mention a simple 3D correction procedure
to estimate the face/rear of a vehicle based on its direction
and supposed form factor. The result of the correction of a
bounding box can be seen in Figure 4, applied to the truck on
the left side of the image.

D. Feature extraction

After the road scene pipeline, we compute a number of
features for the final classifier. We have two main groups of
features extracted from the video, which are computed over
the frames between the start and the end of the event.

One group includes features derived directly from the dense
optical flow. To aggregate the full optical flow information,
which consists of a 2-d vector for each of the 170 880 pixels,
for each frame we compute the average horizontal and vertical
optical flow in each cell of a 3× 3 grid. Then, we aggregate
these values over time, with the following statistical functions:
max, min, std, avg.

Another feature we extract from the optical flow is one
that helps detecting swerving manoeuvres, that are highly

correlated with near-crash events. To identify a swerve, which
we define as a rapid turn towards a side followed by another
to the opposite one, we filter the horizontal optical flow of the
central cell using a convolution with a kernel that highlights a
sequence of rapid changes of direction. Then, we aggregate the
filtered signal across time with the statistical operators max,
std, avg.

The second group of features includes high-level features
derived from the road scene pipeline. The main products of
the pipeline are the TTC and the detection of colliding objects.
From this information, we extract a number of features related
to the TTC value of objects on a collision course with the ego
vehicle, as well as other statistics such as the average number
of surrounding objects, or the maximum area of an object on
a collision course. We also exploit the classifications obtained
from the object detector, to construct different features for
each class. As an example, we do not care about the TTC of
a traffic light, and we do not include it as a feature, though
we might be interested in knowing if a traffic light has been
detected during the event. The feature we compute are all the
combinations of the form: (max|min|std|avg) (TTC|Area)
for (all|colliding) objects belonging to (all categories|all except
traffic lights and stop signs|motorized vehicles|pedestrians
and bicycles), and the average number of objects belong-
ing to (all categories|traffic lights and stop signs|motorized
vehicles|pedestrians and bicycles).

From the telematics data (speed and 3-axis acceleration),
we extract statistical features over the time of the event with
the operators max, std, avg, min.

Overall, we generate a set of almost 200 features. We are
quite generous in the choice of features to include in the
training, since we use them to train a Random Forest classifier,
which is typically able to automatically select the most relevant
features for the classification task. In Section IV, we use the
trained Random Forest to provide an a posteriori ranking of
the features in term of their usefulness for classification.

E. Random Forest classification

Finally, a Random Forest classifier [8] is trained on the
output feature vectors for each event in the training set.
We choose a Random Forest classifier for its well-known
effectiveness and versatility on both binary and multi-category
classification tasks, in addition to being extremely fast. We use
the Random Forest implementation in scikit-learn [19], which
uses Gini impurity to select the splits during the construction
of the classification trees, and samples

√
m features for each

tree, where m is the total number of features. To control the
model complexity, we limit the maximum tree depth and the
number of trees in the forest. Moreover, to take into account
the class imbalance, we weight the samples of the classes by
the inverse of the class frequencies.

IV. EXPERIMENTAL RESULTS

We report experimental results for two scenarios. In the first
experiment, we consider the binary problem of discriminating
between dangerous and safe events, grouping together crash

and near-crash events. In the second experiment, we extend the
approach to the multi-category problem of classifying each
event into one of the 3 classes: crash, near-crash, and safe.
In both cases, we report results obtained in cross-validation
rather than with a train/test split, due to the small number of
crash events that we would rather not dilute. The folds of the
cross-validation are the same in the two scenarios, and they
are stratified by the 3 classes. All the experiments were run
on an Intel Xeon CPU E5-2620 v4 @ 2.10GHz with 32GB of
RAM and an Nvidia Tesla P100 GPU.

In the 2-class problems, we have 7035 dangerous events and
4082 safe events. Table I reports the confusion matrix of the
5-fold cross-validated results, obtained with a Random Forest
with 2000 estimators and max depth 15.

TABLE I
CONFUSION MATRIX FOR THE 2-CLASS PROBLEM

Predicted
Dangerous Safe

R
ea

l Dangerous 6592 443
Safe 999 3083

The global accuracy is 0.87, and the balanced accuracy
(average accuracy per class) is almost 0.85. The classifier
achieves a good recall on the dangerous events (almost 0.94),
and a precision of 0.87. However, the model is still classifying
a significant number of safe events as dangerous ones: the
recall of safe events is slightly above 0.75, while the precision
is again around 0.87. We must remark that for a significant
number of events the distinction between safe and dangerous is
fuzzy even for a human subject. Indeed, in a small experiment
we have run within our team, we estimated that a human
reviewer would achieve a balanced accuracy of around 90%.

In the 3-class problem, we have 280 crashes, 6755 near-
crash events, and 4082 safe events. The confusion matrix is
reported in Table II. The global accuracy is more than 0.85,
although the performance on the classes is not homogeneous.
It appears that discriminating crashes and near-crashes is quite
challenging; on crashes, by far the minority class, the model
achieves a recall of 0.49, though with a high precision (more
than 0.93). Of course, the small number of crashes does
not help generalization. We have also analyzed the metadata
included in the SHRP2 dataset to gain some insight on the kind
of error made by our model on the crash events. Among the
misclassified samples, around 50 contain an accident where
the ego vehicle was hit from behind; in these cases, the video
from a front-facing camera carries little information about the
dynamics of the crash, and the acceleration profile might be
similar to near-crash events. Another example of crash events
that are especially challenging for our system (more than 10
errors) are animal strikes; these events typically unfold very
quickly, and our current object detector is currently not trained
to recognized animals such as deer or rabbits.

A ranking of feature importance can be obtained accumu-
lating the improvement in Gini impurity obtained splitting on

TABLE II
CONFUSION MATRIX FOR THE 3-CLASS PROBLEM

Predicted
Crash Near-crash Safe

R
ea

l Crash 137 133 10
Near-crash 9 6290 456

Safe 1 980 3101

each feature during the training phase, as suggested in [20]. In
both problems, the ranking of a model trained on the whole
dataset shows that the most important feature (1st overall)
to classify crash and near-crash from safe events is, perhaps
unsurprisingly, the maximum longitudinal deceleration, i.e.,
the harshest brake during the event. Excluding that, the first
features for importance are the area of the largest motorized
vehicle on a collision course, and the value of the minimum
TTC of any motorized object on a collision course. Indeed, we
expected to find a close relation between the minimum TTC
with the riskiness of a situation.

Among other highly ranked features are the maximum
swerve value, that indicates presence of rapid evasive ma-
noeuvres, and the standard deviation over time of the average
optical flow in the central cells. Intuitively, this value correlates
highly with harsh movements or strong vibrations.

Interestingly, the maximum speed (from telematics data)
appears to be important to discriminate dangerous from safe
events (top-10), while, in the 3-class problem, the minimum
speed is also highly ranked. This might suggest that knowing
whether the vehicle has stopped right after the event is
important to classify it as a crash.

V. CONCLUSION

In this paper, we introduced an approach for the classifica-
tion of crash and near-crash events, based on the integration of
dashcam videos and telematics data collected from on-board
sensors. In our system, we combine a state-of-the-art object
detector algorithm with a number of other machine learning
and traditional computer vision techniques.

Experimental results on a binary version of the problem,
where we aim to discriminate dangerous events from safe ones,
show that the global classification accuracy in cross-validation
is over 87%. In a multi-category version of the problem, where
we attempt to distinguish between crash, near-crash, and safe
events, we obtain again a good global accuracy of over 85%,
but with a weaker result on the less represented class.

In the near future, we envision our work will involve
improving the object detection algorithm, for instance by
training a model specifically on road scene datasets, such as
those in [21], and enhancing the quality of the TTC estimate.
We also believe that, for this and similar tasks, additional data
with crash and near-crash events is necessary. This poses a
challenge, due to their rare occurrence.

Possible directions for future research involve the extension
to finer-grained classes, and the use of a combination of

recurrent and convolutional neural networks to fully exploit
sequential information. We believe the final goal of this line
of research should be the development of an integrated event
detection and classification system that can run with high
accuracy in real-time on a stream of sensor data from multiple
sources of information.

REFERENCES

[1] S. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi, “Traffic mon-
itoring and accident detection at intersections,” IEEE Transactions on
Intelligent Transportation Systems, vol. 1, no. 2, pp. 108–118, 2000.

[2] Y.-K. Ki and D.-Y. Lee, “A traffic accident recording and reporting
model at intersections,” IEEE Transactions on Intelligent Transportation
Systems, vol. 8, no. 2, pp. 188–194, 2007.

[3] C.-Y. Chen, W. Choi, and M. Chandraker, “Atomic scenes for scalable
traffic scene recognition in monocular videos,” in Proc. of the IEEE
Winter Conference on Applications of Computer Vision, 2016.

[4] F.-H. Chan, Y.-T. Chen, Y. Xiang, and M. Sun, “Anticipating accidents
in dashcam videos,” in Asian Conference on Computer Vision. Springer,
2016, pp. 136–153.

[5] J. White, C. Thompson, H. Turner, B. Dougherty, and D. C. Schmidt,
“Wreckwatch: Automatic traffic accident detection and notification with
smartphones,” Mobile Networks and Applications, vol. 16, no. 3, 2011.

[6] C. Streiffer, R. Raghavendra, T. Benson, and M. Srivatsa, “Darnet: A
deep learning solution for distracted driving detection,” in Proc. of the
18th ACM/IFIP/USENIX Middleware Conference, 2017.

[7] J. M. Hankey, M. A. Perez, and J. A. McClafferty, “Description of the
SHRP 2 naturalistic database and the crash, near-crash, and baseline
data sets,” Virginia Tech Transportation Institute, Tech. Rep., 2016.

[8] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2016, pp. 779–788.

[10] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[11] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in European Conference on Computer Vision. Springer, 2014,
pp. 740–755.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 770–778.

[14] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. of the International
Conference on Machine Learning, vol. 30, no. 1, 2013, p. 3.

[15] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017.

[16] G. Farnebäck, “Two-frame motion estimation based on polynomial
expansion,” in Scandinavian Conference on Image Analysis. Springer,
2003, pp. 363–370.

[17] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, X. Zhao, and T.-K.
Kim, “Multiple object tracking: A literature review,” arXiv preprint
arXiv:1409.7618, 2014.

[18] G. P. Stein, O. Mano, and A. Shashua, “Vision-based ACC with a single
camera: bounds on range and range rate accuracy,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2003, pp. 120–125.

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[20] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning, 2nd ed. Springer, 2009.

[21] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The Cityscapes dataset for
semantic urban scene understanding,” in Proc. of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016.

