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Abstract— In this paper, we propose a novel deep learning
architecture for the end-to-end classification of unsafe maneu-
vers from dashcam data; the proposed model is based on
an innovative two-stream architecture capable of processing
both video and GPS/IMU signals as input streams. A wide
experimentation on a well known naturalistic driving dataset
(SHRP2 NDS) shows that the two sources of information
complement each other in the classification task and proves the
effectiveness of the proposed approach. As a by-product of this
research, we propose and make available a novel classification
of safety-critical events based on the unsafe maneuver leading
to them, which is representative of the real distribution of car
crashes and near crashes.

I. INTRODUCTION

Car crashes are becoming a major problem of the mod-
ern era: in 2016 in the US over 7 millions car crashes
were reported, with over 2 millions injuries and roughly
35.000 fatalities [1]. This is increasing the interest of the
car industry and the scientific literature in real-time car
accident anticipation [2], [3] and Advanced Driver-assistance
Systems (ADAS) [4]. For the same reason, vehicle owners
are increasingly installing dashboard cameras (dashcams) to
provide evidence in case of traffic-related accidents and inci-
dents [5]. Such cameras are often equipped with an Inertial
Measurement Unit (IMU) and a Global Positioning System
unit (GPS) that record additional data such as speed, position,
acceleration and angular velocity. Such sensors often act also
as triggers to start video capturing: for example, once a sharp
change in acceleration is detected, video footage and sensor
data for some seconds before and after the event are recorded
and stored locally, or sent to a server [6].

Motivated by the growing interest in traffic safety and
the rising adoption of dashcams, in this paper we focus on
crash and also near crash events (collectively called safety-
critical events), and specifically on automatic recognition
from dashcam footage and companion sensor streams of
the maneuvers leading to them, performed either by the
subject vehicle or by other vehicles or entities on the road:
we name this problem unsafe maneuver classification. We
see this as a first step towards the more general unsafe
maneuver detection problem, while being at the same time
practically useful on its own: this technology could become,
for instance, the building block of a driver coaching platform,
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Fig. 1: Two-stream architecture for unsafe maneuver classi-
fication. In white, the video feature extractor, a ResNet-50
applied to each frame of the video, in orange, the sensors
feature extractor, a 1D ConvNet and in green, the two stram
classifier, a 1D ConvNet.

effectively contributing to the ultimate aim of preventing car
accidents on the road.

Dashcam data have been used to tackle similar problems
in applications like insurance, fleet management and self-
driving vehicles, to detect and classify car crashes [6], [7],
[8] or driving maneuvers [9], [10], [11]. Instead, we con-
sider both crashes and near crashes. Moreover, we consider
maneuvers performed both by the subject (subject vehicle
SV maneuvers, sometimes also referred to as ego-vehicle
maneuvers) and by other vehicles (non-subject vehicle NSV
maneuvers). Finally, we consider both maneuvers involving
multiple vehicles (e.g., improper lane change, turning) and
single-vehicle maneuvers (e.g., loss of vehicle control, vehi-
cle over the edge of the road). To the best of our knowledge,
no work has addressed unsafe maneuver classification in such
a general way.

To ground the definition of our task on the real distribution
of road events, we contribute a taxonomy of unsafe ma-
neuvers based on the outcomes of a large-scale Naturalistic
Driving Study (NDS) [12], i.e., a collection of real dashcam
data acquired over an extended period of time (years, in
this case) from a large amount of volunteers driving across
multiple states. We then propose to address the resulting
classification problem with an end-to-end Deep Learning
approach and a new two-stream architecture, leveraging
both the video stream and the information coming from
the GPS/IMU sensors. Figure 1 presents a schema of the
proposed architecture. This choice of sensor data matches
what is typically provided by a dashcam, which has no
access, for instance, to throttle position, turn signal and
brake, which could be useful for ego-vehicle maneuver detec-
tion. Moreover, although additional information, e.g., driving



style, ego-vehicle model, could be used to assess unsafeness
and liability of the detected maneuvers, we deiced to not
leverage them as they might be unavailable during inference.
The contributions of this work are thus the following:
• We introduce the new unsafe maneuver classification

problem, aimed at classifying maneuvers that lead to
safety-critical events

• We provide a taxonomy of unsafe maneuvers based on
a Naturalistic Driving Study (NDS) that can be used in
classification and detection tasks

• We propose a new two-streams convolution-based Deep
Learning architecture, leveraging both video and sensors
data, and perform extensive tests to show the impact of
the two input streams on the classification results.

The remaining of the paper is structured as follows. In
Section II we present a review of the scientific literature
related to our task. In Section III we present the unsafe ma-
neuver taxonomy we propose. Section IV describes the two-
stream architecture while Section V reports extensive results
assessing the performance of the proposed architecture.

II. RELATED WORK

To the best of our knowledge, the problem proposed in
this paper has not been addressed before. The most closely
related works in the literature are in the field of Accident
detection / anticipation and Driving maneuver detection.

Accident detection / anticipation In the context of
accident anticipation, Chan et al. [2] proposed a system
for anticipating traffic accident from dashcam videos. They
used an object detection algorithm to extract the objects in
the scene and computed the features of a pre-trained VGG
neural network [13] on their locations. Then, they introduced
a Dynamic Spatial Attention (DSA) system in combination
with a Long short-term memory (LSTM) network and a
custom loss to predict the car crash as earlier as possible.
They evaluated their performance on the novel DAD dataset
that, however, is formed mostly of accidents not involving
the ego-vehicle. Suzuki et al. [3] improved the previous
architecture by using a Quasi-Recurrent Neural Network
(QRNN) and an adaptive custom loss. They also evaluated
their performance on the broader NIDB dataset, which is
composed mostly of ego-vehicle accidents.

In the context of accident detection, Yao et al. [7] ad-
dressed the problem in an unsupervised way, by training a
network to predict the position of objects in the scene in the
next frame and by detecting anomalies with respect to the
actual position. Taccari et al. [6] designed a system based on
object detection and Random Forest to classify safety-critical
events into crashes, near-crashes and safe events.

All the aforementioned approaches heavily rely on object
detection to perform the classification or the prediction.
Clearly, this approach does not generalize to events involving
only the subject vehicle (e.g., loss of control), where no other
vehicle is visible. Recently, some works have investigated
the driving attention (i.e., the driver eye fixation) prediction
task [14] in the context of safety-critical events, under

the hypothesis that such information can provide useful
insights for accident detection and prediction [15], [16],
[17]. Zhu et al. [8] leveraged this idea to detect safety-
critical events in driving videos, addressing it as an anomaly
detection problem. They used the eye fixation salience map
to extract anomaly candidates from the full clips and used
an architecture based on isolation forests to extract the
spatio-temporal safety-critical regions. They also proposed
a mechanism based on image segmentation to compute a
narrative (e.g., car hit motorbike or car hit ego-vehicle).
While this approach has shown potential, it cannot readily be
applied at scale as the one we propose in this paper due to
the limited availability and adoption of solutions to capture
driver attention [15], [16].

Driving maneuver detection In the context of ego-
vehicle maneuver detection, Peng et al. [9] considered both
video and GPS/IMU as inputs. Video frames were fed to a
pre-trained VGG network while handcrafted features were
extracted from the GPS/IMU data. The two streams were
then fed to an LSTM model. The authors proposed to process
only frames sampled on a uniform spatial basis (i.e., a frame
per meter) instead of a temporal one, which they proved
to be beneficial for ego-maneuver detection. Their approach
doesn’t extend to general maneuver detection, though, since
maneuvers performed by other vehicles while the subject
is not moving are ignored. Zekany et al. [10] proposed a
method to classify subject maneuvers from videos, using a
pretrained model (DeepV2D) to extract depth from video
and the camera motion information (and, thus, the trajectory
performed by the subject). Then, they leveraged Dynamic
Time Warping (DTW) distances between trajectories to per-
form the classification. However, in our case, we’re not
interested in detecting the subject maneuver alone, but rather
in classifying the maneuver with respect to its context.

In the context of other vehicle maneuvers detection, Deo et
al. [11] designed a framework based on the detection of road
scene objects and applied tracking and motion detection.

III. UNSAFE MANEUVER TAXONOMY

One of the aims of this work is to define a taxonomy for
safety-critical events based on the maneuver that led to the
dangerous situation. Most of the existing work based their re-
sults on manual classification of crowd-sourced datasets (e.g.,
acquired from YouTube videos) [2], [7], [8]. However, this is
not ideal for several reasons. First, the variety of maneuvers
leading to a dangerous situation in a road environment
is extremely broad, e.g., short distance to another object,
colliding trajectories, violation of right of way or other road
laws [7] and not all these maneuvers are equally likely to
be depicted in videos uploaded on-line: for instance, a driver
may decide not to upload videos where he is at fault. Second,
the definition of safety-relevant events, and by extension of
unsafe maneuver leading to it, is not unambiguous and is
both related to the environmental condition of the road scene
and the perception of danger of the driver [18]. To counteract
this problem, multiple reviewers should be used and clear
definitions to label events should be agreed upon. Third, in



contrast with previous work focusing only on ego-vehicle
maneuvers [9], [10] or other vehicles maneuvers [11], [19],
our aim is to define a broad categorization that considers
all possible reasons leading to safety-critical events, i.e.,
ego-vehicle maneuvers, other vehicle maneuvers but also
poor road condition, the presence of objects in the roadway,
animals, etc.

Therefore, to create a taxonomy that is representative of
the real distribution of safety-critical events while addressing
the above concerns, we propose to base it on a large
Naturalistic Driving Study (NDS), in particular the SHRP2
dataset [12]. The SHRP2 dataset is a collection of more
that 8800 safety-critical events, gathered by more than 3300
drivers between 2010 and 2013. These events have been
manually annotated with event-, driver- and environment-
related variables, for a total of 75 labels [12]. Multiple round
of reviews were performed to validate the annotations, and
careful and unambiguous definitions of all the labels attached
to maneuvers and events are provided: this greatly reduces
the inherent ambiguity of the derived taxonomy.

In particular, each safety-critical event in the dataset has
been labeled with the start and the end of the event and the
so-called precipitating event, i.e., ”The state of environment
or action that began the event sequence under analysis”, an-
swering the question ”but for this action, would the crash or
near-crash have occurred?” [12], for a total of 64 different
annotations. By using these annotations as our starting point,
we define a set of classes, by aggregating similar SHRP2
annotations and by manually relabelling the ones not falling
perfectly into a category, as described in Table I. It is worth
mentioning, as highlighted in [7], that the distribution of the
safety-critical events has a long tail, thus it is intrinsically an
umbalanced problem, e.g., SB is the most common maneuver
by far. Moreover, some of the precipitating events have too
few examples to constitute a statistically significant sample
size. To cope with this problem, we created the classes
SO and NSO containing the remaining unsafe maneuvers
performed respectively by the subject vehicle and by other
vehicles. The labels obtained for the SHRP dataset according
to our taxonomy are available at https://github.com/
mattsim/shrp2-unsafe-maneuver.

IV. METHODOLOGY

To address the unsafe maneuver classification problem we
propose a novel two-stream architecture that can leverage
both the appearance (i.e., the RGB images) and the GPS/IMU
information. We demonstrate the first stream to be crucial
to predict the unsafe maneuvers performed by the other
vehicles, while the fusion of the two is key to predict the ego-
vehicle unsafe maneuvers. Thus, the proposed architecture is
formed by three main modules: a video features extractor, a
sensors feature extractor and a classifier combining the two
streams. A schematic representation can be found in Figure 1.

A. Video features extractor

The video information is processed using a pretrained
ResNet-50 [20] on the Places-365 dataset [21], from here

TABLE I: Unsafe maneuvers taxonomy

Class Description

SL Subject lane change. The subject performs an improper lane
change, potentially from an adjacent lane, an acceleration or
deceleration lane or from a parallel parking spot, drawing
dangerously close to another vehicle in another lane, being
it in front of the vehicle, behind the vehicle and/or with
potential sideswipe threat. Alternatively, the subject invaded
the lane of a car coming in the opposite direction.

ST Subject turn. The subject performs an improper turn, po-
tentially at an intersection, from a driveway or from a
perpendicular parking spot, invading the lane or space of
another vehicle proceeding in the same or opposite direction
of the vehicle.

NSL Non-subject lane change. As SL but with another vehicle
being the one performing the unsafe maneuver.

NST Non-subject turn. As ST but with another vehicle being the
one performing the unsafe maneuver.

SB Subject brakes. The subject vehicle brakes to avoid the
collision with another vehicle in the same lane and going
in the same direction, potentially performing an evasive
maneuver.

SOE Subject over edge. The subject vehicle runs over the edge
of the road or collides with road boundaries.

SLC Subject lost control. The subject vehicle looses control due
road condition, excessive speed or other causes.

SO Subject other maneuver. Other unsafe maneuvers performed
by the subject vehicle.

NSO Non-subject other maneuver. As SO but with another vehi-
cle being the one performing the unsafe maneuver.

O Other. Collision or near collision with animals, pedestrian,
pedal-cyclist or other objects.

on also referred as backbone. ResNet is a widely used
architecture based on residual connections that has shown
superior performances on the Imagenet image classification
challenge [20]. Pretrained weights are known to provide
superior results with respect to starting to train from random
weights [22]. Moreover, a similar network has shown good
results on tasks closely related to our problem [3], [9].

Formally, each video V is a sequence of frames
{Vt0 , Vt1 , . . . , VtT } with {t0, t1, . . . , tT } the video frames
timestamps, Vti the 3-channel RGB frame at time ti of
size W × H . Such sequential formulation is converted to
a tensor representation in order to be fed to the neural
architecture, thus, each video is represented as a tensor of
size T ×3×H×W . The backbone is applied to each frame
and, as a result, the output is a tensor of size T×Vout, which
is then reshaped (via transposition) to a size of Vout×T , with
Vout the number of channels of the last convolutional filter
of the network. In the case of ResNet-50, Vout = 2048.

B. GPS/IMU features extractor

We consider seven type of GPS/IMU measurements:
speed, three-axis accelerations and three-axis angular veloc-
ity, since they are the most common and broadly available.
Such signals have, in general, different sampling frequencies.
Moreover, in a general setting, the sensors providing them
might not be aligned between each other and with the video

https://github.com/mattsim/shrp2-unsafe-maneuver
https://github.com/mattsim/shrp2-unsafe-maneuver
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Fig. 2: Detailed overview of the sensors module (top row)
and the two-stream module (bottom row), as an expansion of
what presented in Figure 1. In the example θ = 3, fs = 16,
Ns = 3, f = 64, N = 3 and B = 64 with an input of size
T = 135.

frame timestamp. To cope with these problems, we resample
the signals before processing them, so that they have the
same number of samples, and this number is a multiple θ
of the number of video timestamps. We do not immediately
downsample the sensors to the same framerate of the videos
to retain as much information as possible from the original
signals for processing. Yet, resampling them at a multiple
rate of the video framerate makes it easier to temporally align
the extracted features with the video features after having
processed the sensor streams. Therefore, this module aim is
twofold: to extract some high level representation of the data,
similar to what is done for the video stream; to temporally
align the video and the sensors information.

Formally, each signal s is a sequence of θ · T samples
{st̂0 , st̂1 , . . . , st̂θT } with t̂θi = ti ∀i ∈ {1, . . . , T} and with
st̂i ∈ R7. Similarly to what we propose in Section IV-A, we
represent each signal as a tensor of size 7× θT and we feed
this tensor to a 1D convolutional neural network formed by
several stacked 1D convolution filters. The network applies
Ns convolutional operations. First, a convolution with kernel
size θ and with fs filters is applied, followed by Ns− 1 1D
convolutions with kernel size 1 and with twice the filters
of the previous layer. Each convolution is followed by a 1D
batch normalization and a ReLU activation function (see [20]
for details). Finally, a max-pooling layer of size θ is applied,
which temporally aligns the video and the sensors streams as
required. A schematic representation of the described module
can be found in Figure 2. The output is a tensor of size
sout × T with sout = fs · 2Ns−1.

C. Two-stream classifier

This module first combines the outputs of the video and
sensors feature extractors, i.e., two tensors of size Vout × T
and sout× T respectively, by concatenation on the temporal
dimension. However, simple concatenation may not be the

best strategy to combine features as typically Vout � sout.
Further processing them so that Vout and sout have com-
parable size may help in correctly leveraging the GPS/IMU
information at the classifier stage.

Indeed, we observed experimentally that applying a bot-
tleneck layer to the video features improves the overall
performance. This layer is formed by a fully-connected layer
of size B, followed by a 1D batch normalization and a ReLU
activation function. Thus, the resulting concatenation is a
tensor of size (B + sout)× T .

Such tensor is then fed to a 1D convolutional network,
formed by N stacked 1D filters. Each operation is formed by
a 1D convolution with kernel size 3, a 1D batch normaliza-
tion and a max-pooling of size 2 and stride 2. The number
of filters applied in each layer is doubled with respect to
the previous one, with the first convolution having f filters,
while the temporal span of the data is halved. In this way,
the network is forced to learn higher level representations of
the underlying data.

The output of the aforementioned filters is a tensor of size(
f · 2N−1

)
×T ′, where T ′ is the temporal span after all the

max-pooling layers, which is fed to a 1D Global Max Pooling
layer. In our tests, such layer performed better than the
commonly used Global Average Pooling layer. One possible
reason is that the unsafe maneuver will occur only in a few, or
even a single, temporal sample among the processed T ′ and,
thus, the network performs better if it bases its classification
only on it, without taking into account features related to
safe driving. Finally, a fully-connected layer is applied, with
a softmax activation function to perform the classification.

A schematic representation of the described module can
be found in Figure 2. It is worth noticing that the proposed
architecture can be used on data streams with arbitrary
resolutions and number of frames, since it is formed mainly
by convolutions and spatial or temporal pooling layers. The
only fully connected layers are the final classifier and the
bottleneck, which however do not require a fixed input size
as they act after global pooling operations.

V. EXPERIMENTAL RESULTS

All the experiments were conducted on the SHRP2 NDS
dataset [12], described in Section III. The dataset is com-
posed of videos at 15 fps with resolution 480 × 356, while
the GPS-related sensors have a sampling frequency of 1 Hz
and the IMU of 10 Hz. The videos have variable length,
going from a minimum of 150 to a maximum of 692 frames,
however the vast majority are 30 seconds videos of 450
frames. To align the dataset, we capped all the videos to
450 frames length, by removing the initial frames or zero-
padding the last frames when needed, and we aligned the
GPS/IMU information and the event start and end to the
crops. We discarded every video with missing speed or
accelerometer data, while considering a constant zero signal
in case of missing gyro data. Finally, we removed a few
corrupted videos, ending up with a dataset of 8497 events,
that we stratified split into train, validation and test with a
80/10/10% proportion.



Since the backbone model has been trained on images with
shape 224× 224, we adjusted our input frames accordingly,
maintaining the aspect ratio and having the smaller side of
224 pixels. However, to be able to perform data augmen-
tation, we resized every video to 346 × 256 and picked a
random 314 × 224 crop during training. At inference time,
we only considered the central crop.

As for the GPS/IMU data, the accelerometer and the
gyroscope occasionally present miscalibration artifacts. To
cope with them, we first rescaled such data to have zero
mean in each example and then used a robust scaling strategy,
scaling the 25th and 75th percentiles of each sensor in the
range [−0.5, 0.5]. Furthermore, Gaussian Butterworth Noise
was applied, only during training, as data augmentation.

All tests were conducted minimizing the cross-entropy loss
with class weight, to cope with class unbalance, and with
Adam optimizer [23] with an initial learning rate lr = 10−3,
reduced to lr = 10−4 after 30 epochs and to lr = 10−5 after
40 epochs. Moreover, we used a weight decay wd = 5·10−3.
The training process took 20 minutes on a V100 GPU by
precomputing and storing locally the backbone outputs.

Finally, as evaluation metric we used the mean average
precision (mAP), which is equivalent to computing the mean
area under the precision-recall curve for each class and,
thus, takes into accounts both precision and recall and is
robust to class unbalance. We set up two sets of tests.
First, in Section V-A, we evaluated the architecture on a
small clip around the event, showing how performance of
the model changes with the different architecture parameters
and the relative benefits of the various choices made in its
definition. Second, we tested our architecture on the full
videos, that contain a good portion of safe driving before the
safety-critical event, showing the capability of the proposed
architecture to focus on the safety-critical part of the clip.

A. Clip around the event

The first set of experiments were conducted on a small
clip containing only the safety-critical event, in order to
prove the capability to distinguish different types of unsafe
maneuvers of the proposed architecture. To do this, we
considered the 2/3 of the [eventStart, eventEnd] segment
as event reference point, and we considered the clip that
goes from σstart frames before to σend frames after such
point. We empirically found that σstart = 90 (6 seconds) and
σend = 45 (3 seconds) let us exclude most of the footage of
safe driving, while retaining the entire relevant maneuver.

The proposed architecture, as described in Section IV,
has many hyperparameters to be tuned. Specifically, θ, Ns,
fs, N , f and B. Intuitively, we expect joint dependencies
between the parameters in their effect on the network perfor-
mance. For instance, according to the best practice of gently
increase the number of filters while decrease the dimension
of the data, a larger B might require a larger f . Fine tuning
the parameters one by one might thus lead to a suboptimal
solution. For this reason, we decided to use a Random
Search [24] strategy on the parameters space, optimizing
the validation mAP. Parameters and the range use during

Random Search are reported in Table II. We run a total of
60 experiments and found the best results with the following
setting: θ = 3, fs = 32, Ns = 2, B = 32, f = 32 and
N = 4, with a mAP on the validation set of 0.653 and a
mAP on the test set of 0.635.

TABLE II: Hyperparameters search space

Variable Parameters

θ {1, 3}

Ns {1, 2, 3}
fs {16, 32, 64}

Variable Parameters

B {32, 64, 128}

N {3, 4, 5, 6}
f {32, 64, 128, 256}

The confusion matrix on the test set is reported in Ta-
ble III. Thanks to the presence of the class weight in the
training loss function, all the classes, including the minority
ones, have overall reasonable precision, recall and AP, with
two notable exceptions. The SL class tends to be confused
with NSL and SB. We believe that the first case is due to
a natural ambiguity of the two classes, e.g., in a narrow
road, maybe without a lane separation line, it is sometimes
hard to say whether the subject invaded the other lane or the
opposite, while the second one is mostly due to the classifier
focusing on the wrong vehicle to detect the safety-critical
event. The ST class tends to be confused with NST and 0.
The first case is composed by events in which both vehicles
are turning, into same or opposite direction and, thus, could
be disambiguated only considering the road laws. In the
second one, instead, the network does not seem to focus
on the pedestrian or pedal-cyclist in the scene, possibly due
adverse lightning conditions.

TABLE III: Confusion matrix for the best configuration on
small clip around event settings

Predicted maneuvers total recall
SL ST NSL NST SB SOE SLC SO NSO O

Tr
ue

m
an

eu
ve

rs

SL 12 1 8 0 4 1 1 0 2 1 30 .40
ST 1 15 0 4 0 2 0 2 0 1 25 .60
NSL 11 2 84 22 20 0 0 1 3 6 149 .56
NST 2 8 6 52 5 2 1 6 1 14 97 .54
SB 11 1 30 7 239 3 2 3 10 5 311 .77
SOE 2 2 0 3 0 86 6 1 0 7 107 .80
SLC 0 1 0 1 0 3 12 0 2 0 19 .63
SO 0 1 0 1 0 2 0 13 0 0 17 .76
NSO 0 0 1 1 2 1 0 1 13 0 19 .68
O 5 12 5 4 1 0 2 3 1 41 74 .55

precision .27 .35 .63 .55 .88 .86 .50 .43 .41 .55 848 -

To prove the effectiveness of the proposed approach, we
compared the model described above, referred as VS, with
several variants:
• VS+L: A baseline classifier, working on the same fea-

tures, but deploying a 2-Stacked LSTM layer, proposed
in related works [2], [9].

• VS-B: The proposed architecture, without the the bot-
tleneck layer.

• V: The proposed architecture, without the GPS/IMU
stream.

• S: The proposed architecture, without the video stream.
Results are reported in Table IV. Clearly, processing

the two streams is key to achieve high performance, thus



validating our hypothesis that the two sources of information
complement each other in the solution to our problem. In this
sense, while the video stream generally performs worse than
the sensor one, it is better at detecting maneuvers involving
other vehicles (e.g., NST, 0) while the opposite is true for
the ego-vehicle ones (e.g., SL, ST, SOE, SLC). Furthermore,
the introduction of the bottleneck layer is beneficial for
the classification. Finally, even when deploying both feature
streams, there is a large gap in mAP between the proposed
classifier based on convolutions and pooling layers and the
LSTM layers typically used in the state of the art.

TABLE IV: Results of the proposed approach and baselines

model average precision (AP) mAP
SL ST NSL NST SB SOE SLC SO NSO O

VS .28 .54 .61 .60 .91 .92 .60 .68 .62 .59 .635
VS-B .20 .48 .66 .61 .93 .91 .55 .57 .70 .66 .627
VS+L .17 .46 .57 .47 .89 .90 .64 .67 .31 .62 .569
S .35 .55 .57 .30 .80 .94 .59 .65 .59 .23 .556
V .10 .27 .51 .42 .84 .59 .51 .31 .07 .51 .414

B. Full video

As second set of experiments we applied the same archi-
tecture to the full 450 frames (30 seconds) videos, to prove
the ability of the model to focus on the safety-critical event
among several other safe maneuvers. We retained the optimal
architecture parameters from the previous experiment and
the same train/validation/test split, but the architecture was
retrained from scratch. As a result, we obtained a validation
mAP of 0.648 and a test mAP of 0.634. Such results are
comparable with the ones described in Section V-A, showing
the capability of the proposed architecture to automatically
focus on the relevant safety-critical part of the video, an
important trait in a practical deployment of our solution.

VI. CONCLUSIONS

In this paper, we have introduced the novel unsafe ma-
neuver categorization problem. We have also proposed a
taxonomy of its classes based on a NDS and, thus, on the real
distribution of safety-critical events. Then, we have shown
how a novel neural architecture, processing both videos
captured by a dashcam as well as GPS/IMU sensor data,
can be used to tackle it. After a broad calibration phase,
exhaustive tests have shown the capability of the proposed
architecture to distinguish the various unsafe maneuver types
and also to correctly identifying the time interval in which an
unsafe event occurred within a recording mostly composed
of normal behaviour. The problem we propose in this paper
has not been investigated before in the scientific literature;
we hope our study will call for further research on this
important topic, which we believe is conducive to improve
driving safety and accident prevention.
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