
A Lightweight Deep Learning Model for Vehicle Viewpoint Estimation
from Dashcam Images

Simone Magistri∗ 1, Francesco Sambo† 2, Fabio Schoen∗, Douglas Coimbra de Andrade†,
Matteo Simoncini∗†, Stefano Caprasecca†, Luca Kubin†, Luca Bravi†, Leonardo Taccari†

Abstract— Vehicle viewpoint estimation from vehicle cameras
is a crucial component of road scene understanding.

In this paper, we propose a deep lightweight method to
predict vehicle viewpoint from a single RGB dashcam image.
To this aim, we customize and adapt state-of-the-art deep
learning techniques for general object viewpoint estimation to
the vehicle viewpoint estimation task. Furthermore, we define
a novel objective function that takes into account errors at
different granularity to improve neural network training. To
keep the model lightweight and fast, we rely upon MobileNetV2
as backbone.

Tested both on benchmark viewpoint estimation data (Pas-
cal3D+) and on actual vehicle camera data (nuScenes), our
method is shown to outperform the state of the art in vehicle
viewpoint estimation, in terms of both accuracy and memory
footprint.

I. INTRODUCTION

Road scene understanding from a moving vehicle is
becoming increasingly important in many computer vision
fields, like autonomous driving [1], urban scene reconstruc-
tion [2], [3] and semantic extraction and classification like
lane detection [4], road boundaries detection [5] and crash
and near-crash events [6].

Along with traditional environment perception tasks, such
as object detection, tracking and segmentation, object view-
point estimation is a core part of scene understanding [7]. In
our case, the focus is on vehicle viewpoint estimation.

Convolutional Neural Networks (CNNs) have been largely
used to tackle vehicle viewpoint estimation, but their training
requires a huge volume of annotated data that can be
collected through the usage of a full suite of sensors like
Light Detection and Ranging (LIDAR) or multiple cameras
mounted on a moving car [8].

LIDAR is optimal to obtain high quality annotated data
and it is the state-of-the-art solution, in terms of precision and
accuracy, for autonomous driving systems [9], [10], but it is
extremely costly, especially when compared to current dash-
cam prices. That does not make it suitable for after-market
applications, such as fleet management solutions, that require
low end-user costs. In this context, monocular dashcams are
usually the solution of choice [6]. For this reason, in this
paper we present a method for vehicle viewpoint estimation
starting from monocular dashcam images.

†Verizon Connect Research, Florence, Italy
∗University of Florence, Italy
Email: 1 simone.magistri08@gmail.com
Email: 2 francesco.sambo@verizonconnect.com

Road scene understanding from dashcam images has in-
herent difficulties such as radial distortion, movement distor-
tion and occlusion. Furthermore, we assume that the cameras
are not mounted at exactly the same place in the windshield
for every vehicle, leading to non-fixed points of view and
lack of extrinsic camera parameters. In light of this, we aim
at defining a solution that generalizes to multiple makes and
models of vehicles and to ad-hoc mounted devices.

Estimating object viewpoint from dashcam images re-
quires first to identify their position within the image and
their size. In an application with constrained computational
budget, it is common to use single shot object detectors, like
YoloV3 [11]. In this paper, we assume to have ground truth
level 2D object detection and focus solely on estimating the
viewpoint on the road plane, with respect to the camera.
We decouple the viewpoint estimation problem from the
detection one since training a detector jointly to a viewpoint
estimator results in a model that is both less versatile and
harder to mantain in a production environment. In addition,
recent literature [12] reports that approaches that couple the
two tasks do not outperform those that solve them separately
for vehicle objects.

This work introduces a lightweight deep learning model
that is able to predict vehicle viewpoint from a vehicle im-
age without using any additional information, like extrinsic
camera parameters.

Our model is tested on the nuScenes [8] dataset, a large-
scale autonomous driving dataset, and on the Pascal3D+
dataset, a benchmark in most of the state-of-the-art papers
on object viewpoint estimation.

The main contributions of this work are:
• We developed an accurate, lightweight vehicle view-

point model which takes as input object detection results
provided by an independent detector (such as YoloV3).

• We introduced a new multi-task loss and defined a new
model which is able to predict simultaneously finer and
coarser viewpoint bins.

• We successfully encapsulated the vehicle type informa-
tion as input feature, improving the performance on the
vehicle viewpoint estimation task.

• We successfully adapted the Siamese approach, devel-
oped by [13], in the context of decoupled viewpoint
estimation (i.e., the object detector is not jointly trained
with the viewpoint estimator).

The paper is organized as follows: in Section II we de-
scribe related work on vehicle and general object viewpoint
estimation; in Section III, we describe the datasets used;



in Section IV we describe the proposed approach and the
models that were developed; finally, in Section V the data
pre-processing carried out, the results obtained and the error
analysis are provided.

II. RELATED WORK

The viewpoint estimation problem has been addressed as
either a classification or a regression approach. The first
approach is the most popular since it has been proved more
effective by Massa et al. [14], [15].

Focusing on the classification approach, Ghodrati et al.
[16] extracted features from the feature maps of a CNN
to estimate a discretized object viewpoint. Tulsiani et al.
[17] directly estimated the viewpoint from the object images,
using a CNN taking into account the object class. Su et al.
[18] introduced a discretization into 360 bins for viewpoint
prediction and they proposed a geometric structure aware
loss function. Divon et al. [13] proposed a CNN based
architecture that jointly solved detection, classification and
viewpoint estimation, introducing a loss function based on
the idea of the Siamese Networks.

III. DATASET

Pascal3D+ [19] is a general object dataset. It consists
of 12 object classes. It includes Pascal VOC 2012 [20]
and a subset of Imagenet [21] objects, enriched with 3D
annotations (azimuth, elevation and tilt).

nuScenes [8] is a large-scale autonomous driving datasets.
The dataset is a collection of driving scenes from the vehicle
point of view, collected through the usage of a single
car equipped with a full suite of sensors. Each vehicle is
annotated with its 3D bounding box and its viewpoint.

Unlike Pascal3D+, nuScenes dataset provides representa-
tive images for the task of identifying object viewpoint using
images from a dashcam. All images in nuScenes are acquired
by 6 cameras mounted on the front, front-right, front-left,
back right, back-left and back of a moving vehicle. Thus, the
elevation and tilt of the objects are almost the same for each
image. Pascal3D+ images, on the other hand, are captured
by a single fixed camera, located at different positions. As a
result, elevation and tilt of the objects may significantly vary
across different images.

IV. PROPOSED APPROACH

The objective of this research is to develop a framework
based on CNNs to estimate vehicle viewpoints given a single
road view image. In particular, we only focused on azimuth
estimation since we assumed that elevation and tilt of the
vehicles with respect to a dashcam do not vary much. The
azimuth estimation was addressed as a classification problem
rather than a regression one, since it has been proven more
effective in most recent literature [14], [15]. For this purpose
the azimuth was discretized according to the pattern in Figure
1, with four scale levels ranging from coarser to finer.

Performance on azimuth estimation was evaluated using
a common model structure: a CNN backbone followed by a
global average pooling layer. We enriched this architecture

0

2

31

0°

90°

180°

270°

0

12

1
2

3

4
5

6

13 14
15

16
1
7

18

11
10

9

8
7

23 22
21

20
1
9

0°

90°

180°

270°

0
7

6

5
4

3

2

1

0°

90°

180°

270°90°

180°

270°

0°

180°

0

4

8

12

1
2

3
4

7
6

5

9
10

11

12

14

13

15

90° 270°

Fig. 1. Azimuth scale levels we adopted to estimate vehicles orientation.
The frame of reference assumes slice 0 facing towards the viewpoint.

by adding different output layers and input features. Prior to
providing details on the architecture changes, let us define
the notation.

Let θ ∈ R be an azimuth angle and let Nα : R 7→
{0, .., α − 1} be the discretization function that maps each
angle to the corresponding bin, where α ∈ Ω and Ω is
the set of possible number of bins. Let yα ∈ Rα be the
binary indicator vector of the bin Nα(θ). Let W be the
set of network weights and let X ∈ R3×w×h be an input
RGB image, where w, h are the image width and height
respectively, and let f(W,X) be the network output.

A. Single-Task model

We followed an approach similar to [15], predicting di-
rectly the angle bins. The network output f(W,X) ∈ Rα
was thus fixed to size α and its softmax was used to compute
the standard cross-entropy function:

Lα(yα, ŷα) := −
α∑
i=1

yαi log(ŷαi ), (1)

where ŷα = Softmax(f(W,X)).

B. Multi-Task model

We defined a model that could estimate simultaneously
different angle discretizations, introducing a mapping be-
tween the network output f(W,X) ∈ R360 and Nα. The
mapping was obtained summing the network logits corre-
sponding to each discretization level. Let us define Sα ∈ Rα
the result of summation of f(W,X) for discretization α.

The resulting loss function was:

L =
∑
α∈Ω

Lα(yα, ŷSα) (2)

where ŷSα = Softmax(Sα)
There are multiple benefits of using this approach:
• The overall loss was less penalized when the network

made mistakes on fewer tasks.
• It significantly reduced the training time with respect to

four single-task models training.
In Figure 2 the overall architecture is shown.



Backbone

0

12

1
2

3

4
5

6

13 14
15

16
1
7

18

11
10

9

8
7

23 22
21

20
1
9

0

90

180

270

Softmax

0

2

31

0

90

180

270

0
7

6

5
4

3

2

1

0

90

180

27090

180

270

0

180

0

4

8

12

1
2

3

4

7
6

5

9
10

11

12

14

13

15

90 270

∑

∑

∑

∑

Softmax

Softmax

Softmax

Global
Average
Pooling

{

Ground truth azimuth 

Fig. 2. Multi-task network. Azimuth at different levels of scale is estimated summing the network logits to compute the loss described in Equation 2.
The set Ω of the estimated bins is fixed to {4, 8, 16, 24}.

C. Multi-Task model & Class information

We took into account the vehicle types in two ways:

• Class specific output: it is the approach followed by
[18], [17], [15] and consists of defining an output layer
characterized by c × 360 units, where c refers to the
number of vehicle classes.
In addition to the previous works, we added the pro-
posed multi-task network output layer for each class c
as explained in the previous section IV-B.

• Class as input feature: the class information is encoded
in an one-hot-encoded format and it is concatenated to
the Global Average Pooling output. In addition, two
dense layers of size 512 and 256, respectively, before
the output layer are added.

D. Multi-Task model & Siamese network

The Siamese approach was firstly explored by Divon et
al. [13] in the context of jointly training an object detector
and a viewpoint estimator. We adapted their approach to our
architecture.

Let us consider the pair (X, θ), where X ∈ R3×w×h

is the input image and θ ∈ [0, 360) is the corresponding
azimuth label. If the input image X were to be flipped
horizontally, we obtain the image Xflp and its expected
azimuth is mirrored with regards to the Y axis.

Let us define the operator flip : Rn 7→ Rn, which maps
y = (y1, y2.., yn) to flip(y) = (yn, yn−1, .., y1).

The forward pass of our architecture was the following:

1) Feed the network with X and Xflp.
2) Compute the losses L and Lflp for the pairs

(f(W,X), θ), (flip(f(W,Xflp)), θ) respectively, using
Equation 2.

3) Evaluate the final loss:

Ls = L+Lflp+λD(f(W,X), flip(f(W,Xflp))) (3)

where D : R360 × R360 7→ R is a distance function,
λ ∈ R is a regularization term, L and Lflp are obtained
applying the formula 2 to X and Xflp respectively.

We considered as D function the square L2 distance, as
proposed in [13], and the angular distance:

D(X1, X2) = ‖X1 −X2‖22 (4)

D(X1, X2) =
1

π
arccos

X1 ·X2

‖X1‖ ‖X2‖
(5)

where X1,X2 ∈ Rn

V. EXPERIMENTS

A. Data pre-processing

In the case of nuScenes, we collected the images from
the 6 cameras provided, projecting the 3D bounding boxes
to each image plane, following the procedure provided in
the development kit of [8]. We extracted crops around the
vehicles from the projected 3D boxes and we retained the
azimuth. While analyzing the nuScenes dataset, we found
images that did not contain enough information for azimuth
detection because of their size and form factor. For this
reason we filtered the dataset removing vehicles satisfying
either one of the following conditions:

width
height < 0.4, width× height ≤ 900px2, visibility < 60%

where width and height are the bounding box dimensions
and visibility is the total visible size of the vehicle in the six
cameras, as provided by nuScenes.

In the case of Pascal3D+, we extracted tight crops around
the vehicles using the provided 2D bounding boxes and
we retrieved the azimuth angle. Furthermore we manually
identified and labeled the trucks contained in Pascal3D+ to
preserve consistency with nuScenes vehicle classes.

Finally, we defined one training validation split for
nuScenes and one for Pascal3D+ and we merged them to
obtain a single training and validation set. As for Pascal3D+
we split 50/50 its official training set stratifying by vehicle
type, while for nuScenes the split was obtained choosing
different scenes for training and validation set. As for the
test set, we maintained separated nuScenes and Pascal3D+
test set. Specifically, for Pascal3D+ we used the Pascal VOC
2012 validation set as test set, as specified in [19], including



TABLE I
SAMPLES DISTRIBUTION OF THE PROPOSED SPLIT ON PASCAL3D+ AND

NUSCENES.

Split Bike (%) Bus (%) Car (%) Motorbike (%) Truck (%) Total
Training 2.0 3.3 74.4 2.0 18.3 410k
Validation 2.9 3.7 74.0 2.7 16.7 36k
Pascal3D+ test 18.6 14.7 44.4 17.8 4.5 1.9k
nuScenes test 2.1 3.5 72.8 2.2 19.5 90k

TABLE II
PERFORMANCE COMPARISON BETWEEN MULTI-TASK MODEL AND

SINGLE-TASK MODEL USING MOBILENETV2 AS BACKBONE.

Bins Task Bike(%) Bus(%) Car(%) Motorbike(%) Truck(%) Avg(%) Total(%)

4 Single 58.81 82.36 90.98 70.85 81.66 76.93 87.75
Multiple 63.27 83.79 92.35 72.13 82.88 78.89 89.15

24 Single 27.06 62.24 69.38 35.45 58.82 50.59 65.44
Multiple 27.95 62.24 70.11 35.45 56.92 50.53 65.62

the vehicles annotated as difficult, occluded and truncated,
while for nuScenes, we used the official validation set as test
set. In Table I the percentage of vehicle types in each split
and the effective size of datasets are shown.

B. Implementation details

Our code was written exploiting the Pytorch Framework
[22].

Optimizer. We used Adam [23] as optimizer with the
default parameters and weight decay 10−5.

CNN backbone. We used backbones, with different size
and structure, to evaluate the performance on our datasets:
MobileNetV2 ([24]), Resnet50 ([25]) and VGG16 ([26]).
Pre-trained Imagenet weights were used for all models. We
fine-tuned all the layers of MobileNetV2 and Resnet50,
whereas for VGG16, we fine-tuned the last two convolutional
blocks and the fully connected layers.

Data Preparation. Images were resized to 224 × 224
pixels and were normalized by subtracting the mean and
dividing by the standard deviation of the Imagenet dataset.
During the model training, we applied Random Horizontal
Flipping with probability 0.5 to each image, except for the
training of the model described in Section IV-D.

Metrics. The training of each model was stopped when
the accuracy on the validation set stopped to increase. On
the test set, we measured the accuracy per class, the average
accuracy across classes and the total accuracy.

The majority of the experimental results are reported on
the nuScenes dataset, as it is more representative of the
task we want to solve (vehicle viewpoint estimation from
dashcam images). For completeness, at the end of the session
we evaluate our model also on the Pascal3D+ test set.

C. Multi-task model vs Single-task model.

We compared the performance of the multi-task model
(IV-B) with the single-task model (IV-A), using Mo-
bileNetV2 as backbone.

In Table II the performance on the easiest (4 bins) and
hardest (24 bins) tasks are provided. The results show that the
multi-task model outperforms the single-task one, in terms

TABLE III
MULTI-TASK MODEL PERFORMANCE VARYING THE BACKBONE USED.

Bins Backbone Bike(%) Bus(%) Car(%) Motorbike(%) Truck(%) Avg(%) Total(%)

4
Resnet50 66.39 84.27 92.00 71.88 83.29 79.56 89.05
VGG16 57.09 82.29 90.20 65.16 80.34 75.02 86.76
MobileNetV2 63.27 83.79 92.35 72.13 82.88 78.89 89.15

24
Resnet50 24.78 59.73 68.13 32.02 55.24 47.98 63.63
VGG16 22.44 55.12 64.88 27.77 51.05 44.25 60.14
MobileNetV2 27.95 62.24 70.11 35.45 56.92 50.53 65.62

TABLE IV
MULTI-TASK MODEL PERFORMANCE TAKING INTO ACCOUNT THE

VEHICLE CLASSES.

Bins Architecture Bike(%) Bus(%) Car(%) Motorbike(%) Truck(%) Avg(%) Total(%)

4
No Class 63.27 83.79 92.35 72.13 82.88 78.89 89.15
Class Specific output 64.57 84.58 92.01 76.84 83.07 80.22 89.10
Class input feature 65.77 84.84 92.10 75.31 83.73 80.35 89.29

8
No Class 50.91 79.12 85.14 63.27 73.67 70.42 81.50
Class Specific output 49.92 79.24 85.10 61.32 74.00 69.92 81.47
Class input feature 53.14 80.01 85.20 64.24 74.60 71.44 81.82

16
No Class 36.78 69.77 75.87 43.14 64.28 57.97 71.86
Class Specific output 34.29 69.61 75.70 46.52 64.57 58.14 71.81
Class input feature 39.95 69.20 75.64 45.95 65.22 59.19 71.98

24
No Class 27.95 62.24 70.11 35.45 56.92 50.53 65.62
Class Specific output 24.78 63.10 70.10 34.73 57.54 50.05 65.68
Class input feature 28.16 63.51 69.73 37.04 58.09 51.30 65.66

of total accuracy for both tasks and of average accuracy for
four bins.

D. Effect of backbone network

Due to its reduced number of parameters when compared
to VGG or ResNet models, MobileNetV2 is one of the fastest
CNNs. We evaluated the performance using more complex
backbones (Table III).

Our results show that performance drops when more
complex models are used, which seems counter intuitive.
We conjecture that, for this task, the reduced number of
parameters helps preventing overfitting. For this reason,
we used MobileNetV2 as a backbone for the subsequent
experiments.

E. Multi-task model with class information

We evaluated the effect of adding the vehicle type infor-
mation to the network structure (Table IV). Adding the class
information as input feature outperforms the class specific
output approach.

Overall, the class information yields minor improvements
on the test set in terms of total accuracy, while it in-
creases considerably the average accuracy across classes.
This discrepancy is likely due to the high class imbalance
in the dataset (Table I). Specifically, we can observe that
the accuracy per class on bike and motorbike (the minority
classes) improves for each discretization level.

F. Multi-task model with siamese approach

We evaluated different λ values for the Equation 3. Since
the distance metrics we used have different scale, we evalu-
ated two different search ranges:
• λ ∈ {10k}, k ∈ {−2,−1, 0, 1} for the angular distance.
• λ ∈ {10k}, k ∈ {−4,−3,−2} for the euclidean

distance.
The models which provided the best performance on the

validation set for each discretization level were selected for



TABLE V
MULTI-TASK MODEL & SIAMESE NETWORK RESULTS.

Bins Metric λ Bike(%) Bus(%) Car(%) Motorbike(%) Truck(%) Avg(%) Total(%)

4 angular 10−1 65.66 86.20 92.26 73.36 83.65 80.23 89.40

8 angular 10−1 54.75 80.61 85.46 62.40 75.24 71.69 82.15

16 L2 norm 10−3 39.95 71.23 76.17 44.52 65.76 59.53 72.52

24 L2 norm 10−4 29.19 63.57 70.11 35.45 58.09 51.28 65.92

TABLE VI
RESULTS SUMMARY NUSCENES.

Bins Architecture Avg(%) Total(%)

4

No Class 78.89 89.15
Class specific output 80.22 89.10
Class input feature 80.35 89.29
Siamese 80.23 89.40

8

No Class 70.42 81.50
Class specific output 69.92 81.47
Class input feature 71.44 81.82
Siamese 71.69 82.15

16

No Class 57.97 71.86
Class specific output 58.14 71.81
Class input feature 59.19 71.98
Siamese 59.53 72.52

24

No Class 50.53 65.62
Class specific output 50.05 65.68
Class input feature 51.30 65.66
Siamese 51.28 65.92

performance evaluation on the test set. In Table V the results
on the test set are provided. It is worth noting that, in our
tests, we verified that the training procedure is robust and
that one can choose a set of parameters such that the model
performs best on average.

G. Summary of nuScenes Results

In Table VI the best results for each discretization level
obtained are reported. Overall, the siamese approach pro-
vides the best results in terms of the average accuracy per
class and the total accuracy.

H. Pascal3D+ results

The official metric of Pascal3D+ is the Average Viewpoint
Precision(AVP), which is meant to evaluate jointly the detec-
tor and viewpoint model performances. Since we considered
the 2D Object Detection Task as solved, we evaluated the
models performance on Pascal3D+ test with the same metric
used for nuScenes.

To compare our results with the ones in the literature, we
used the pre-trained model provided by Su et al. [18] and
we run it on the Pascal3D+ test vehicles.

In Table VII, we report the performance on the Pascal3D+
test set (it should be noted that accuracy on class truck is
not applicable because the truck label is not present in the
original Pascal3D+ dataset). We can observe that the siamese
approach which provides better results on nuScenes, provides
the best performance on Pascal3D+ in almost every case.

Furthermore, our model outperforms the one from [18]
at all discretization levels and in terms of both total accu-
racy and average accuracy across classes. From a memory

TABLE VII
PASCAL3D+ RESULTS.

Bins Architecture Bike(%) Bus(%) Car(%) Motorbike(%) Truck(%) Avg(%) Total(%)

4

Render for CNN ([18]) 68.5 81.5 68.4 73.2 N/A 72.9 74.3
No Class 68.2 81.5 78.1 72.3 74.4 74.9 75.6
Class specific output 68.5 81.5 79.6 74.9 79.1 76.7 76.9
Class input feature 70.1 81.9 79.0 72.9 77.9 76.3 76.6
Siamese 71.6 84.0 80.0 74.9 76.7 77.5 78.0

8

Render For CNN ([18]) 58.6 70.5 58.3 62.5 N/A 62.5 63.2
No Class 60.6 68.0 69.6 60.8 65.1 64.8 65.9
Class specific output 61.4 69.8 68.4 61.1 69.8 66.1 66.1
Class input feature 58.3 73.3 69.7 62.0 67.4 66.2 66.7
Siamese 60.3 71.2 70.2 66.4 68.6 67.3 67.8

16

Render For CNN ([18]) 39.4 63.3 46.5 45.1 N/A 48.6 49.7
No Class 38.9 65.8 57.1 41.0 48.8 51.8 51.8
Class specific output 38.9 68.0 60.2 42.8 52.3 52.4 53.9
Class input feature 37.5 69.0 58.8 44.0 53.5 52.5 53.4
Siamese 42.5 68.0 57.9 42.8 50.0 52.2 53.5

24

Render For CNN ([18]) 34.9 55.9 40.8 36.0 N/A 41.9 42.6
No Class 30.4 54.8 47.3 31.3 39.5 40.7 42.1
Class specific output 31.6 58.0 47.0 30.7 33.7 40.2 42.3
Class input feature 29.9 58.0 49.7 31.9 37.2 41.3 43.5
Siamese 32.7 56.2 49.3 36.3 41.9 43.3 44.6

footprint point of view, having about 2.7M parameters our
model is much more lightweight then the model in [18], with
110M trainable parameters. That makes the model backward
pass faster in training phase and the model itself suitable for
edge computing applications.

I. Error Analysis

Pascal3D+ vs nuScenes. We used the average accuracy
per class to compare the performance on nuScenes and
Pascal3D+. The average accuracy per class allows us to
perform a fair comparison between the performance on the
two datasets, because it is less affected by the different class
balance, compared to the overall test accuracy.

Considering Tables VI and VII, our model performs better
on nuScenes than on Pascal3D+. In fact we gain on average
over different discretization levels about 5.6% on the average
accuracy per class. These results suggest that the dataset
context, described in Section III, influences the performance.

Bounding Box Size. Since for many applications it is not
of interest to detect objects that are very far, we investigated
how the performance changed removing the smaller bound-
ing boxes from the nuScenes test set.

We restricted our analysis to the car class, the majority
class in nuScenes (Table I). We considered different thresh-
olds, by removing the bottom 20%, 30%, 40%, 50%, 60% of
the boxes sorted by area. For each threshold, we evaluated
the accuracy on class car at different levels of discretization
(Figure 3). In Figure 4, we provide a sample from the
nuScenes dataset for visualization.

VI. CONCLUSIONS

In this paper we presented a lightweight deep learning
model to predict the viewpoint of vehicles from dashcam
images.

In our work, we adapted methods for general object view-
point estimation to our context. Furthermore we introduced a
new training loss, which enforces consistency between angle
estimates at different levels of scale. Finally, we introduced a
model improving the performance on the vehicle viewpoint
estimation task.

Experimental results on the nuScenes dataset show that
a small convolutional backbone, like MobileNetV2 [24], is



Fig. 3. Accuracy on class car removing the bottom 20%, 30%, 40%,
50%, 60% of the boxes sorted by area.

Fig. 4. Bounding boxes of size 61× 61 (on the left) and 134× 134 (on
the right), which represent the 20-th and 60-th percentiles of the areas of
the bounding boxes in the dataset.

able to obtain results which are comparable to or even better
than the ones obtained by much more complex backbones.
Thanks to the speed and the size of the backbone, our model
is suitable to be deployed on edge devices.

Furthermore, we showed that adding the object class as
network input and training the network with a Siamese ap-
proach results in further improvement both in total accuracy
as well as in accuracy per class, especially on the minority
classes (bike and motorbike)

Comparing the performance between Pascal3D+ and
nuScenes, we showed the superiority of our model on
nuScenes. It is worth noting that the fixed road point of view
of the camera improves vehicle viewpoint estimation.

Finally, our results indicate that model accuracy increases
when detected vehicles are closer to the camera. This is
particularly useful for applications which do not require the
viewpoint estimation of far away vehicles.

Possible directions for future research involve the usage of
videos. We strongly believe that video temporal information
can noticeably improve the performance in estimating vehicle
viewpoint, by imposing strong constraints on the rigid object
motion through time.

REFERENCES

[1] J.-R. Xue, J.-W. Fang, and P. Zhang, “A survey of scene understanding
by event reasoning in autonomous driving,” International Journal of
Automation and Computing, vol. 15, 04 2018.

[2] Q. Li, H. Lu, X. Liu, X. Huang, C. Song, S. Huang, and J. Huang,
“Optimized 3d street scene reconstruction from driving recorder im-
ages,” Remote Sensing, vol. 7, pp. 9091–9121, 07 2015.

[3] N. Cornelis, B. Leibe, K. Cornelis, and L. V. Gool, “3D Urban Scene
Modeling Integrating Recognition and Reconstruction,” International
Journal of Computer Vision, vol. 78, pp. 121–141, 2007.

[4] Y. Hou, Z. Ma, C. Liu, and C. C. Loy, “Learning lightweight lane
detection cnns by self attention distillation,” 08 2019.

[5] T. Suleymanov, P. Amayo, and P. Newman, “Inferring road boundaries
through and despite traffic,” 2018 21st International Conference on
Intelligent Transportation Systems (ITSC), pp. 409–416, 2018.

[6] L. Taccari, F. Sambo, L. Bravi, S. Salti, L. Sarti, M. Simoncini,
and A. Lori, “Classification of crash and near-crash events from
dashcam videos and telematics,” 2018 21st International Conference
on Intelligent Transportation Systems (ITSC), pp. 2460–2465, 2018.

[7] M. Naseer, S. Khan, and F. Porikli, “Indoor scene understanding in
2.5/3d for autonomous agents: A survey,” IEEE Access, vol. 7, pp.
1859–1887, 2019.

[8] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuScenes: A multimodal
dataset for autonomous driving,” arXiv preprint arXiv:1903.11027,
2019.

[9] B. Zhu, Z. Jiang, X. Zhou, Z. Li, and G. Yu, “Class-balanced
grouping and sampling for point cloud 3d object detection,” ArXiv,
vol. abs/1908.09492, 2019.

[10] A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
“Pointpillars: Fast encoders for object detection from point clouds,”
12 2018.

[11] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
ArXiv, vol. abs/1804.02767, 2018.

[12] D. Oñoro, R. López-Sastre, C. Redondo Cabrera, and P. Gil-Jiménez,
“The challenge of simultaneous object detection and pose estimation:
A comparative study,” Image and Vision Computing, vol. 79, 01 2018.

[13] G. Divon and A. Tal, “Viewpoint estimation—insights and model,” in
Computer Vision – ECCV 2018, V. Ferrari, M. Hebert, C. Sminchis-
escu, and Y. Weiss, Eds. Cham: Springer International Publishing,
2018, pp. 265–281.

[14] F. Massa, M. Aubry, and R. Marlet, “Convolutional neural networks
for joint object detection and pose estimation: A comparative study,”
12 2014.

[15] F. Massa, R. Marlet, and M. Aubry, “Crafting a multi-task CNN for
viewpoint estimation,” 09 2016.

[16] A. Ghodrati, M. Pedersoli, and T. Tuytelaars, “Is 2D Information
Enough For Viewpoint Estimation?” 01 2014, pp. 19.1–19.12.

[17] S. Tulsiani and J. Malik, “Viewpoints and keypoints,” 06 2015, pp.
1510–1519.

[18] H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for CNN: Viewpoint
estimation in images using CNNs trained with rendered 3D model
views,” in The IEEE International Conference on Computer Vision
(ICCV), December 2015.

[19] Y. Xiang, R. Mottaghi, and S. Savarese, “Beyond PASCAL: A
benchmark for 3D object detection in the wild,” in 2014 IEEE Winter
Conference on Applications of Computer Vision (WACV), vol. 00,
March 2014, pp. 75–82.

[20] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman, “The Pascal Visual Object Classes (VOC) Challenge,”
International Journal of Computer Vision, vol. 88, no. 2, pp. 303–338,
Jun. 2010.

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A Large-Scale Hierarchical Image Database,” in CVPR09,
2009.

[22] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differen-
tiation in PyTorch,” in NeurIPS Autodiff Workshop, 2017.

[23] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014.

[24] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,” 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 4510–4520, 2018.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2016, pp. 770–778.

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv 1409.1556, 09 2014.


