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Summary

This thesis addresses two relevant mixed-integer optimization problems, with ap-
plication in telecommunications and energy systems, using mathematical program-
ming techniques.

Part I focuses on a bilevel multi-commodity flow problem subject to max-min
fair flow allocation, which arises in telecommunication networks with elastic de-
mands. The problem is motivated by routing in Internet Protocol (IP) networks,
where there are no prescribed demands to be satisfied, since the network provides
a best-effort service. The network operator aims at maximizing a utility function
(total throughput), by selecting the routing paths, while the bandwidth is allocated
fairly by the transport protocol. Accordingly, we define the maximum-throughput
Unsplittable Flow Problem subject to Max-Min Fair flow allocation (UFP-MMF)
as the bilevel problem where, at the upper level, the routing paths maximizing the
total throughput are sought, while, at the lower level, the flow is allocated to each
origin-destination pair maximizing a fairness measure. In this work, we analyze the
problem from a theoretical standpoint, and investigate various MIP-based solution
approaches.

In Chapter 1, we recall some basic concepts and provide some background on
max-min fairness and on bilevel programming. In Chapter 2 we discuss the motiva-
tion, summarize related work and investigate theoretical properties of UFP-MMF,
including complexity results and its price of fairness. In Chapter 3, we discuss how
the bilevel problem can be cast as a single-level mixed-integer programming prob-
lem exploiting the concept of the bottleneck arcs. The single-level problem turns
out to be very challenging, since the origin-destination paths have to be elementary
(without repeated nodes), and the bottleneck conditions are, in essence, equilibrium
constraints. In particular, we develop two different approaches: a branch-and-cut
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algorithm based on an arc formulation, where subtour elimination constraints are
separated, and a branch-and-price algorithm based on a path formulation. We also
propose a heuristic based on local search that provides good feasible solutions in a
short computing time. In Chapter 4 we discuss relaxations and variants of UFP-
MMF, involving alternative fairness criteria. Since in both the branch-and-price
and the branch-and-cut algorithm eliminating subtours is an essential aspect, in
Chapter 5 we investigate integer programming formulations to prevent subtours
in elementary path problems. We describe several extended formulations, and one
based on generalized cutset inequalities (GCS). We prove an equivalence result,
for elementary longest path problems, between the GCS-based formulation and
the strongest known extended formulation, and summarize computational exper-
iments to compare the performance of the formulations in a full branch-and-cut
framework. Finally, in Chapter 6 we report computational results, on different
topologies taken from the SNDlib [OWPT10], with the described approaches for
UFP-MMF and its relaxations. We also discuss the structure of the solutions, and
draw some concluding remarks. From the computational experiments, the best
exact method appears to be the branch-and-cut algorithm with separation of the
GCS inequalities, although optimality remains out of reach on a good fraction of
the instances. The heuristics are crucial in obtaining close-to-optimal solutions
for the hardest instances in short computing times (below 10 minutes), while the
proposed relaxations are able to provide tight dual bounds.

Part II addresses an operational planning problem in energy cogeneration sys-
tem with thermal storage, where one has to determine the operations of a set
of (co)generation units (i.e., on/off status and production level), over a given time
horizon, in order to satisfy users demands and minimize the operating costs. Chap-
ter 7 includes a brief survey on previous and related work, and its relationship with
two well-known problems in operations research: unit commitment and production
planning. Chapter 8 discusses mixed-integer programming approaches, in the spirit
of the techniques used for production planning [PW06], focusing in particular on
some basic variants of the problem. For the variant with constant production
upper and lower bounds, a dynamic programming-based polynomial algorithm is
described. In Chapter 9, we introduce a revised Γ-robust formulation, inspired
by the one by Bertsimas and Thiele in [BT06], that we extend to the operational
planning problem. Finally, in Chapter 10 we discuss real-world cases, where the
problem is solved as a MINLP or as a MILP, exploiting a piecewise-linear approxi-
mation. The problem can typically be solved with exact methods for time horizons
between one day and a few weeks. When annual economic incentives have to be
taken into account, we also propose a MILP-based rolling-horizon heuristic that
can be applied to larger-scale problems provided by an Italian energy company.
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CHAPTER1
Preliminaries

The first part of this thesis addresses a bilevel network optimization problem involv-
ing fair allocation of the bandwidth. This chapter introduces background material
and previous work on the notion of fairness and, specifically, the max-min fairness
criterion in network optimization problems. Then, we give a brief summary and
some pointers to the literature of bilevel programming.

1.1 Fairness
Let us consider a system where a set of resources has to be shared among n users,
and let X ⊆ Rn be the set of feasible allocation vectors x ∈ X. Let us also assume
there is a vector of real-valued utility functions (g1, . . . , gn) that maps a resource
allocation vector x to the utility level ui of each user i = 1, . . . , n, and let U ⊆ Rn

the set of feasible utility vectors, i.e., U = {u = (g1(x), . . . , gn(x)) | x ∈ X}.
Since there are multiple subjects, each with its own utility function, there can

be multiple conflicting objectives. Then, we can consider the multi-objective opti-
mization problem defined as:

max{(u1, . . . , un) | u ∈ U},

for which a set of Pareto-optimal solutions exists.
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Chapter 1. Preliminaries

Among those, each rational, but selfish, user i would like to select the one
maximizing its own utility ui. On the other hand, a central decision maker might
want to determine the allocation maximizing the total utility in the system

∑n
i=1 ui,

that is, the so-called social optimum. An alternative could be determining the most
efficient solution, defined as the one where the usage of the available resources∑n
i=1 xi is maximized. If the utility level of each player is proportional to their

resource allocation, the two objectives are equivalent.
In many settings, no priorities among the users exist, but a solution that max-

imizes the overall utility might not be desirable, if it is considered unfair by some
of the involved players.

The concept of fairness is rather subjective, and it has no universally accepted
definition, but its importance has been widely acknowledged in several fields, rang-
ing from economic theory to communication networks. The foundational concepts
of fairness and equity have been studied since the beginning of political economics
and, more recently, in social choice theory. As an example, classic utilitarianism,
according to the principle of utility which dates back to the philosopher Jeremy
Bentham [Ben79], prescribes an allocation which maximizes the sum of utilities (the
social optimum). On the contrary, Rawlsian justice gives priority to the players
that are the least well off [Raw71]:

A scheme is unjust when the higher expectations, one or more of them, are
excessive. If these expectations were decreased, the situation of the least
favored would be improved. [ . . . ] Social and economic inequalities are to be
arranged so that they are both (a) to the greatest expected benefit of the
least advantaged and (b) attached to offices and positions open to all under
conditions of fair equality of opportunity.

The point (a) in the above passage is referred to by Rawls as the difference principle,
which posits:

[I]n a basic structure with n relevant representatives, first maximize the wel-
fare of the worst off representative man; second, for equal welfare of the
worst-off representative, maximize the welfare of the second worst-off repre-
sentative man, and so on until the last case which is, for equal welfare of
all the preceding n − 1 representatives, maximize the welfare of the best-off
representative man. We may think of this as the lexical difference principle.

A criterion which is essentially equivalent to the Rawlsian concept of equality
and has been widely studied in the operations research literature is max-min fair-
ness, where the minimum resource allocation is maximized, then the second-worst,
the third-worst, and so on. Another informal definition states that an allocation
is max-min fair if there is no way to increase the utility of any element i without
decreasing the utility of an element j with a smaller or equal utility1.

As an example, borrowed from [NP08], consider the problem of distributing
fairly 1 liter of beer to three customers with different glass capacities. The allo-

1Note that these definitions are only equivalent if U is convex.
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1.1. Fairness

Figure 1.1: Example of max-min fair allocation. The allocation is fair in the
sense that the resource is allocated equally to all players as far as their capacity
allows it.

cation depicted in Figure 1.1 is max-min fair, because no customer can rationally
claim more beer that what has been allocated. Customer 1 has reached its maxi-
mum capacity, while Customer 2 and 3 have the same level of beer.

1.1.1 Max-min fairness (MMF)
From now on, we will assume that the utility level for each user is equivalent to
their allocation level, i.e., ui = xi for i = 1, . . . , n. Then, we will always speak of
fairness in the allocation space X, rather than in the utility space U .

Let us define max-min fairness formally. First of all, we need to define a pref-
erence relation over the set X of feasible allocation vectors.

Definition 1.1. The lexicographic order �lex on a set X ⊆ Rn is the preference
relation defined as x �lex x′ if either x = x′, or there exists an integer l, with
1 ≤ l ≤ n, such that xq = x′q for all q < l and xl > x′l.

Let σ : X → Rn be the sorting operator permuting the components of x in
nondecreasing order, i.e., such that σi(x) ≤ σj(x) whenever i < j.

Definition 1.2 (Max-min fairness). An allocation vector x∗ ∈ X is max-min fair
(MMF) if, for any other vector x ∈ X, σ(x∗) �lex σ(x), i.e., it is a solution to the
sorted lexicographic maximization problem:

x∗ ∈ arglexmax{σ(x) | x ∈ X}. (1.1)

This is as general a definition as possible. In the literature, several alternative
definitions exist – usually, restrictions that are valid only under some additional
assumptions on X. The following definition, slightly more restrictive, is used, e.g.,
in [BG92], and we refer to it as strong max-min fairness as in [Nil06].

Definition 1.3 (Strong max-min fairness). An allocation vector x∗ ∈ X is strongly
max-min fair if, for any other vector x ∈ X, if ∃i such that xi > x∗i , then ∃j such
that x∗j ≤ x∗i and x∗j > xj .

5



Chapter 1. Preliminaries

In other words, an allocation vector is strongly-MMF if there is no way to
increase the allocation of any element i without decreasing the allocation of an
element j with a smaller or equal allocation, as in Figure 1.1. A strongly-MMF
vector is easily shown to be unique, and if a vector x is strongly-MMF, then it is
also MMF. The two definitions are equivalent when the allocation set X is convex.

Concerning the algorithms to achieve max-min fairness, the main distinction
is between problems where the allocation set X is convex and those where it is
not. In the convex case, it is possible to find the max-min fair solution using an
algorithm based on a sequence of, at most, n convex optimization problems (linear
programs if X is a polyhedron). This algorithm is described in various forms in
[Tom05], [OPT05], [Nil06], [RB07] and [NP08]. If the feasible allocation set X is
not convex (a notable example: if it is discrete), the problem of finding a max-min
fair solution is harder, but can be solved in a similar way, with algorithms based
on a sequence of, at most, n non-convex subproblems – e.g., mixed-integer linear
programs if X is described by linear constraints (except for the integrality ones).
This technique is described, e.g., in [OW04] and [Nil06].

1.1.2 Max-min fair network flow allocation
Let us consider max-min fair allocation in the context of network flow problems.
Consider a directed graph G = (V,A) with arc capacities cij ∈ R+, and a set
K = {(s1, t1), . . . , (sk, tk)} of origin-destination (OD) pairs for which a flow has to
be routed over the arcs. The pairs (i.e., the network users) have elastic demands, in
the sense that there is not a predetermined flow demand to satisfy. We start with
the example of single-path routing, or unsplittable flow problem. The resources
to be allocated are the arc capacities (e.g., bandwidth), and the allocation vector
is the vector φ of the flow values, where φi is the flow allocated to the i-th pair
(si, ti).

As an example of max-min fair allocation in a network flow problem, con-
sider the following linear graph with three nodes V = {1, 2, 3}, two arcs A =
{(1, 2), (2, 3)}, three origin-destination pairs K = {(1, 2), (1, 3), (2, 3)}, and fixed
routing paths as shown in the following figure:

1 2
c12 = 2

3
c23 = 3

s1 t1
s2 t2

s3 t3

φ1
φ2
φ3

The flow for pair (s1, t1) is routed from node 1 to node 2 on the arc (1, 2); the
flow for pair (s2, t2) is routed from node 1 to node 3 on the path containing the
consecutive arcs (1, 2) and (2, 3); the flow for pair (s3, t3) is routed from node 2 to
node 3 on the arc (2, 3). Maximizing the throughput over the network yields the
allocation vector φ = (2, 0, 3), with max total throughput τ = 5, as follows:
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1.1. Fairness

1 2
c12 = 2

3
c23 = 3

s1 t1
s2 t2

s3 t3

φ1 = 2
φ2 = 0
φ3 = 3

The allocation is not fair, in the sense that the pair (s2, t2) has an allocation φ2 = 0
that could be increased by reducing larger allocations, as follows:

1 2
c12 = 2

3
c23 = 3

s1 t1
s2 t2

s3 t3

φ1 = 1
φ2 = 1
φ3 = 2

The flow allocation vector φ = (1, 1, 2) satisfies the definition of MMF. Observe,
however, that it has a smaller total throughput τ = 4. In the next paragraph we
will discuss how this allocation can be computed.

Computing the max-min fair flow allocation on fixed paths

Consider the case where, for each pair, each origin and destination is connected via
a single routing path which is known a priori. Let us denote with D ∈ R|A|×|K| the
arc-pair incidence matrix, where the entry dstij = 1 if the arc (i, j) belongs to the
s-t path, and 0 otherwise. The problem of finding a max-min fair flow allocation
over the fixed paths can be written as:

lexmax σ(φ) (1.2)
s.t. Dφ ≤ c (1.3)

φ ≥ 0, (1.4)

where σ is the sorting operator previously mentioned, and the Constraints (1.3)–
(1.4) define the set of feasible flow allocations according to the arc capacities and
the given paths. Since the feasible region is a (bounded) polytope, this is a convex
max-min fairness problem. As such, there exists a unique solution, that can be
found by the so-called water filling algorithm, which was introduced in [BG92].

Let N ⊆ K be the set of non-blocked pairs, i.e., those whose flow allocation
can still be increased starting from the current flow allocation φ, and E ⊆ A be the
subset of arcs which are not saturated by the current flow allocation vector φ. Let
us denote by U(i, j) ⊆ K the set of pairs whose path contains the arc (i, j), i.e.,
the (s, t) such that dstij = 1.

Algorithm 1.4 (Water filling, [BG92]).

Step 0: Initialize φ← 0, N ← K, E ← A

7



Chapter 1. Preliminaries

Step 1: Find a saturating arc and its allocation value:

η∗ ← max η

s.t. η

 ∑
(s,t)∈N

dstij

 ≤ cij (i, j) ∈ E ,

where
∑

(s,t)∈N d
st
ij is the number of non-blocked pairs sharing an arc.

Step 2: For all (s, t) ∈ N :
φst ← φst + η∗.

For all (i, j) ∈ E:

cij ← cij − η

 ∑
(s,t)∈N

dstij

 .

For all (i, j) ∈ E such that cij = 0:

E ← E \ {(i, j)},

N ← N \ U(i, j).

Step 3: If N = ∅, stop. Otherwise, go to Step 1.

The maximization problem in Step 1 does not require solving a linear program,
as it can be solved by inspection, its solution being:

η∗ = min
{

cij∑
(s,t)∈N d

st
ij

| (i, j) ∈ E
}
.

The idea of the algorithm, as implied by the name, is to increase all the flow
allocations simultaneously by a quantity η, until an arc is saturated. The flow
value for pairs sharing the saturated arc cannot increase further, hence their value
is fixed and they are removed from the set N . The procedure is then repeated
on the residual graph, where the arc capacities are reduced by the amount of flow
already allocated, until all the pairs cannot increase anymore. It is worth noting
that the water filling algorithm can be seen as a specialization of more general
algorithms to achieve the max-min fair allocation on convex sets.

1.1.3 Max-min fair network optimization

If the paths are not fixed, but can be optimized, i.e., selected during the optimiza-
tion, the routing paths and the flow allocations have to be determined jointly so
to have a solution which is as (max-min) fair as possible. Several variants of this
problem have been studied in the literature.
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1.2. Bilevel programming

Optimized paths with single source: splittable (Megiddo, 1974) and
unspittable flows (Kleinberg et al., 2001)

In [Meg74], Megiddo studies the case of max-min fair splittable flows with a single
source s and multiple sinks T = {t1, . . . , tn}, where the MMF condition is imposed
on the vector containing the values of the flows entering each sink ti. The problem
is convex and a polynomial-time algorithm, close in spirit to the one that can be
used for general convex MMF problems, is shown to be correct.

Following Megiddo’s work, Kleinberg, Rabani and Tardos [KRT01] consider
the unsplittable-flow variant of the single-source problem, where, for each pair,
the routing path connecting the origin and the destination can be selected among
all possible elementary paths2. Each origin-destination flow is unsplittable, and
must be routed along a single path. In this unsplittable case, the problem is not
convex, and already NP-hard. Nevertheless, the authors describe an approxima-
tion algorithm by considering a problem where the MMF condition is relaxed by a
multiplicative factor, and the flows are restricted to be powers of 2.

Optimized paths with unsplittable flows

In the general case where there are multiple sources and sinks, one considers a
set of origin-destination pairs (s, t) ∈ K, for which a single routing path and a
flow allocation have to be determined so to yield an allocation which is as fair as
possible.

The problem is nonconvex and NP-complete. Algorithms for the problem con-
sist in a sequence of at most |K| mixed-integer programming problems: at itera-
tion l, the l-th smallest flow allocation value is determined, but not which origin-
destination pair will take that allocation in the optimal solution. For the interested
reader, a detailed description of such algorithms can be found in [Nil06, Chap. 4],
[OŚ06], [OPT05].

1.2 Bilevel programming
Classical mathematical programming problems typically assume a single objective
function and a single decision maker (DM) that controls all the decision variables.

A bilevel optimization problem accounts for two decision makers that control
only a subset of the decision variables. The so-called leader is the DM at the upper
level, that makes his decision first, on a subset of variables. The follower (lower
level) reacts optimally to the decision of the leader, according to his own set of
constraints and his objective function. The leader has perfect knowledge of the
follower’s behavior, hence the decision of the leader has to take into account the
reaction of the follower.

2We say a path is elementary if no vertices appear more than once in it. Paths with this
property are sometimes called simple, (see e.g. [CLRS01]).
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Accordingly, a bilevel program is a mathematical programming problem where
one or more mathematical programs appear in the constraints, and can be written
as follows:

min
x,y

F (x, y) (1.5)

s.t. G(x, y) ≤ 0 (1.6)
x ∈ X (1.7)
y ∈ argmin

y
f(x, y) (1.8)

s.t. g(x, y) ≤ 0 (1.9)
y ∈ Y. (1.10)

The upper and lower-level variables are, respectively, x ∈ X and y ∈ Y . Similarly,
F and f are the upper and lower-level objective functions, while G and g are
the upper and lower level constraints (notice that they may involve both sets of
variables). We remark that this formulation refers to the optimistic scenario, where
we assume that, among equivalent optimal solutions for the follower, the leader can
select the one which is best for its objective function. Viceversa, in the pessimistic
setting, the follower is fully adversarial, in the sense that it picks the (lower-level)
optimal solution which is worst for the leader.

Bilevel problems are a special case of general multilevel problems, where a whole
hierarchy of decision makers is considered [VC94]. The concept of bilevel problem
can be traced all the way back to the work of Stackelberg [VS52] in economic
game theory, which introduced a class of games involving agents at two levels, the
leaders and the followers, with a hierarchical structure analogous to the one found in
bilevel programming. Stackelberg considered, at the lower level, a Nash equilibrium
rather than an optimization problem, much in the spirit of what are known today as
mathematical programs with equilibrium constraints (MPEC) [LPR96]. This class
of problems can be seen as a special case of bilevel programming, since MPECs
are essentially equivalent to bilevel programming problems where the lower level is
convex and differentiable, and any MPEC can be formulated as a bilevel problem.

The simplest and most studied case, where both the problem at the upper and
the lower level are linear, is known as linear bilevel programming and was shown to
beNP-hard by Jeroslow in [Jer85], while Hansen et al. [HJS92] proved it is strongly
NP-hard. In this case, one can exploit strong duality or the complementary slack-
ness conditions to reformulate the problem as a single-level problem with noncon-
vex constraints, which, in turn, can be linearized obtaining a mixed-integer lin-
ear program. This combinatorial structure makes possible, e.g., approaches based
on branch-and-bound algorithms [BM90]. An analogous reformulation is possible
when the lower level is convex, so that it can be replaced with its Karush Kuhn
Tucker (KKT) conditions. Both for the linear and convex case several approaches
have been explored, such as methods based on vertex enumeration, gradient de-
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scent or penalty functions. For surveys and further details on bilevel programing,
especially the linear case, plenty of resources are available. As a starting point, we
refer to [CMS07], [VC94], [Dem03] and [BA93].

When the second level problem also controls integer variables, most reformu-
lations and approaches that can be used for the convex variants cannot be easily
extended, since there are no compact optimality conditions. In general, bilevel
problems with integer variables at the second level cannot be expressed as a single-
level mixed-integer program [Jer85], although in some special cases of practical
relevance, this is possible (e.g., [ABF11, LSO12]).

Recently, the authors in [CCLW14] show that several known bilevel variants of
the knapsack problem, which is one of the most basic and fundamental problem in
combinatorial optimization, and whose standard version is NP-hard3, are complete
for the Σp2 complexity class of the polynomial hierarchy [Pap03]. Nevertheless, there
have been a few attempts at computational algorithms for general mixed-integer
bilevel problems. The first is probably the one of Moore and Bard [MB90], that
propose a basic branch-and-bound algorithm for pure integer bilevel problems.
In [BM92], the same authors propose a specialized variant of the algorithm for
pure binary bilevel problems. In [WY90], heuristic algorithms for general mixed-
integer bilevel programs are described. The algorithm of [MB90] is extended by
DeNegre in his PhD thesis [DeN11], where he also proposes a family of cutting
planes for the pure integer case, which are, however, not generalizable to mixed-
integer problems. To the best of our knowledge, no efficient algorithm for general
mixed-integer bilevel problems has been proposed to this date, remaining an open
challenge.

3Although it has a pseudopolynomial time algorithm and full polynomial time approximation
scheme.
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CHAPTER2
Bilevel unsplittable flows subject to max-min

fairness

In this chapter, the problem of bilevel maximum-throughput Unsplittable Flow
subject to Max-Min Fair flow allocation (UFP-MMF) is introduced. Specifically,
after describing the motivation for this work, we give a formal definition of the
problem, provide some examples and discuss several theoretical properties, includ-
ing complexity results, other structural properties, its relationship with respect to
other network routing problems and establish its price of fairness.

2.1 Motivation

Best-effort delivery describes a network service in which the network does not
provide any guarantees that data is delivered or that a user is given a certain quality
of service level or priority. In a best-effort network, all the users obtain best-effort
service, meaning that they obtain unspecified variable bit rate and delivery time,
depending on the current traffic load. In this setting, user demands are said to be
elastic: they are specified by an origin-destination (OD) pair without a prescribed
flow value.

13
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Let us consider the routing problems for best-effort service in Internet Proto-
col (IP) networks where, for instance, several users simultaneously download data
between different hosts with no guaranteed rate, but wish to do so as fast as pos-
sible. The aim of the IP network operator is maximizing a utility function such as
the total throughput. The operator can select the routing paths; however, it has
no direct control over the underlying transport protocol (e.g., TCP) that actually
allocates the bandwidth. The flow of each origin-destination pair is adapted by
TCP based on the available capacity (which depends on the current traffic load)
and the distributed congestion control mechanism is expected to allocate the flows
in a fair way, that is, without privileging any user. Congestion avoidance algo-
rithms in practice are complex [Jac88, CJ89], especially because of their highly
dynamic and distributed nature, and the analysis of their behavior is not triv-
ial [DKS89, KMT98, MR02]. A widely used notion of fairness in networks is that
of Max-Min Fairness (MMF): indeed, in IP networks common congestion avoid-
ance mechanisms aim at realizing a fair allocation of the flows over the routing
paths provided by the IP layer, see e.g. [MR02, CJ89, Flo91] and the references
therein, and the average transmission rates allocated by TCP can be reasonably
approximated by max-min fair flows over the routing paths provided by the IP
layer.

Hence, maximizing the throughput in a network under congestion avoidance
mechanisms can be viewed as a bilevel problem where the network operator selects
the routing paths for each user, and the transport protocol allocates the resources
(available bandwidth) according to a fairness principle (MMF).

2.2 Balancing throughput and fairness
So far, most of the attention in the literature has been devoted to the problem
of finding the fairest solution, which we have discussed in Section 1.1. When the
routing paths are fixed, the water-filling algorithm finds the max-min fair solution in
polynomial time. When routing paths are not given a priori, the problem consists
in determining jointly a network routing (i.e., selecting a path for each origin-
destination pair) and a flow allocation such that the allocation is as max-min fair
as possible. An important distinction is between the cases with unsplittable or
splittable routing, that is, where the flow between each origin-destination pair can
be routed over one or many (not necessarily disjoint) paths. In the splittable case,
the problem is convex and can be solved via a sequence of at most one LP problem
per origin-destination pair, while, in the unsplittable case, the subproblems to solve
are mixed-integer programs with binary variables. As we mentioned in Chapter 1,
the first to study max-min fair problems in directed graphs, focusing on the single-
source variant, were Megiddo [Meg74] for the splittable case, and Kleinberg, Rabani
and Tardos [KRT01] for the unsplittable one.

More than one author have raised the concern that such fair solutions might
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not be sufficiently efficient and investigated the loss of efficiency due to imposing
fairness (see, e.g., [BFT11]). Different, or relaxed, definitions of fairness have been
investigated to make up for this inefficiency. In [SB08], an approach similar to that
of traditional algorithms for convex max-min fairness is adopted to derive fair flow
allocations balancing fairness and efficiency (throughput). In [AS04], the splittable
case with a weighted MMF criterion is considered, so that it is possible to give
different priorities to the users. The authors of [DHK+12] propose a relaxation of
the notion of MMF with the definition of Upward Max-Min Fairness, where a locally
max-min fair solution is obtained instead of the overall fairest one. In [DMS12]
a practical algorithm to balance throughput and fairness for splittable routing is
presented.

To the best of our knowledge, the work in [ACCG13], [ACT14] and in this
thesis is the first to consider the fair flow allocation as a constraint of a more
general network routing problem, rather than the optimization objective.

2.3 The bilevel problem: UFP-MMF
Let us formally define the bilevel problem of Maximum Unsplittable Flow subject
to Max-Min Fair flow allocation (UFP-MMF).

Definition 2.1 (UFP-MMF). Given a directed graph G = (V,A) with capacities
cij ∈ R+ and a set K = {(s1, t1), . . . , (sk, tk)} of origin-destination pairs, select a
single routing path for each pair so as to maximize the total throughput

∑
(s,t)∈K φst,

subject to the constraint that the amount of flow allocated to the origin-destination
pairs is Max-Min Fair with respect to the chosen paths.

As motivated by the application, UFP-MMF is a bilevel problem where, at the
upper level, the leader (network operator) selects a routing path for each origin-
destination pair maximizing the total throughput, i.e., the sum of all the flows
allocated to the pairs. The allocation is done, at the lower level, by the follower
(the congestion avoidance protocol), that allocates the flows to the paths chosen
by the leaders according to the Max-Min Fairness principle.

Example 2.2. Consider the graph with the arc capacities and the six OD pairs
reported in Figure 2.1, where cae = ε is a positive value smaller than 1. Note that
for i = 2, . . . , 5 there is a unique path to route (si, ti), while there are two paths
for (s1, t1) and three paths for (s6, t6).

In the optimal UFP-MMF solution, the flow of pair (s6, t6) is routed over the arc
(a, e), avoiding congestion that would result in a decrease of the total throughput.
The flow of pair (s1, t1) can be routed either through c or d. In case it is routed
through c, the max-min fair flow allocation results in φ = (1.5, 1.5, 1.5, 2, 2, ε)
with a (suboptimal) total throughput of 8.5 + ε. In case it is routed through d,
the allocation vector is φ = (1, 3, 3, 1, 1, ε), with τ = 9 + ε, which is the optimal
solution.
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3
210

3
2

ε

(s1 = b, t1 = e)
(s2 = b, t2 = c)
(s3 = c, t3 = e)
(s4 = b, t4 = d)
(s5 = d, t5 = e)
(s6 = a, t6 = e)

Figure 2.1: Graph with six origin-destination pairs used in Example 2.2.

The bilevel problem UFP-MMF has a natural interpretation from the perspec-
tive of game theory. The problem can be seen as a 2-player static Stackelberg (or
leader-follower) game [VS52], with the leader (the network operator) that plays
first, maximizing the objective function

∑
(s,t)∈K φst, and one non-cooperative

Nash follower (the transport protocol) that reacts maximizing a sorted lexicograph-
ical objective function. The pure Stackelberg equilibria, i.e., solutions where none
of the players has an incentive to change unilaterally its (pure) strategy, are repre-
sented by the optimal solutions to UFP-MMF. The equilibria are not unique, and it
is easy to verify that more than one equivalent optimal (leader-maximal) solutions
can exist, as shown in Figure 2.2. Also other problems related to max-min fairness

s

t1

t2

t3

1

1

1

1

Figure 2.2: Graph with 3 origin-destination pairs K = {(s, t1), (s, t2), (s, t3)} and
multiple optimal solutions for UFP-MMF. Pairs (s, t1) and (s, t2) only have one
path. For (s, t3), both path choices result in the same overall throughput τ = 2.

have been studied in the context of game theory; for sake of readability, we refer
the reader to the end of the chapter (Section 2.8) for a brief discussion of them.

2.4 Difference with related problems in network
optimization

If the leader has total control on both the path selection and the flow allocation,
thus dropping the fairness constraint, UFP-MMF becomes a single-level maximum-
throughput unsplittable flow problem. The maximum-throughput Unsplittable
Flow Problem (UFP) is well known to be NP-hard on arbitrary graphs, but we
will see in Chapter 6 that, in practice, it appears to be significantly easier than
UFP-MMF. Note also that UFP is a relaxation of UFP-MMF, as both problems
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have the same objective function and the feasible region of UFP-MMF is strictly
contained into the one of UFP.

Viceversa, suppose that the follower has control on both paths and flow alloca-
tions. This is equivalent to replacing the max-throughput objective function of the
leader with the MMF objective function. The problem would become a single-level
non-convex max-min fair problem, where the overall fairest solution is sought over
the set of all unsplittable flows (we denote this problem by UMMF).

Example 2.3. Consider again the graph in Figure 2.1. We have discussed in
Example 2.2 that the bilevel UFP-MMF optimal vector is φ = (1, 3, 3, 1, 1, ε), with
a total throughput of τ = 9 + ε, obtained routing (s6, t6) over the arc (a, e), and
(s1, t1) through d.

It is easy to verify that the optimal value of UFP can be obtained by allocating
a flow φ1 = 0 to the pair (s1, t1), and by routing a flow φ6 = ε over the arc (a, e).
The resulting flow allocation vector is φ = (0, 3, 3, 2, 2, ε), with a total throughput
τ = 10 + ε, which is strictly greater than the optimal solution for UFP-MMF.
Observe that, in UFP, the optimal solution often has flow allocations of value 0
corresponding to paths with high congestion on several arcs.

Consider, viceversa, the case where paths and flow allocations are optimized
jointly, and the overall max-min fair solution is sought (UMMF). Assume that
ε < 1

3 . The flow for (s6, t6) will not be routed over the arc (a, e), since ε is
smaller than any allocation that would be granted to (s6, t6) using one of the other
two paths, for any choice of (s1, t1). Therefore, both (s1, t1) and (s6, t6) will go
through either c or d. If both are routed through d, the allocation vector reads
φ = ( 1

3 , 3, 3,
1
3 ,

1
3 ,

1
3 ), with total throughput 7 + 1

3 . If both are routed through c,
the allocation vector reads φ = (1, 1, 1, 2, 2, 1), with total throughput 8. If one
is routed through d and one through c, both top and bottom arcs would have
congestion 2, and the allocation vector would read either φ = (1, 3

2 ,
3
2 , 1, 1,

3
2 ) or

φ = ( 3
2 ,

3
2 ,

3
2 , 1, 1, 1), both yielding the sorted lexicographically maximal solution,

that has total throughput 7 + 1
2 . Notice that two equivalent solutions exists, as

uniqueness of the max-min fair solution is not guaranteed when the utility set is
not convex.

At this point, it should be clear that:

- on the one hand, maximizing the total throughput does not guarantee fair-
ness. Indeed, the optimal UFP solution usually contains several allocations
with value 0, which cannot appear in a max-min fair solution by definition1;

- on the other hand, maximizing fairness according to the MMF principle may
lead to a solution which is far from optimal with respect to the total through-
put.

1Assuming the network contains no arcs with capacity 0.
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It is possible to quantify what is the worst-case gap between the optimal value of
the bilevel UFP-MMF and the single-level variants we have just described. Unfor-
tunately, this quantity can be arbitrarily large in both cases.

Proposition 2.4. The gap in terms of total throughput between an optimal solution
to UFP-MMF and an optimal solution to UFP can be arbitrarily large.

Proof. Consider the example of the linear graph in Figure (2.3), with m arcs of
unit capacity and the set of origin-destination pairs K = {(s1, t1), . . . , (sk, tk)}.
Each pair (si, ti) has a corresponding fixed path pi, thus the leader has actually no
choice on the routing paths.

. . .l
{ 0 1 2 m

pm+1

pk

p1 p2 pm

Figure 2.3: Linear graph used in Proposition 2.4.

Each of the pairs (si, ti) with i = 1, . . . ,m has origin si = i− 1 and destination
ti = i. The remaining l pairs, with i = m+1, . . . , k, where l = k−m, have origin in
the node 0 and destination in m, so they use all the m arcs simultaneously, causing
a l + 1 congestion on every arc.

The maximum total throughput for UFP has value m. In the optimal solution,
the pairs i = 1 . . .m will be allocated a flow of value 1, while the remaining pairs
will have an allocated flow of value 0.

On the other hand, the total throughput of UFP-MMF is given by:

m

l + 1 + l

l + 1 = m+ l

l + 1 = k

k −m+ 1 , (2.1)

since each arc is shared by l + 1 pairs and, according to the notion of max-min
fairness, they are all allocated the same amount of capacity. As the number of
pairs l grows, the total throughput approaches 1:

lim
l→∞

m+ l

(l + 1) = 1, (2.2)

while, if l is constant and m→∞, the limit is divergent:

lim
m→∞

m+ l

(l + 1) =∞. (2.3)

Then, for any constant ε > 0, it is possible to build an example where the ratio
between UFP-MMF and UFP is smaller than ε. As an example, take lε > 1

ε − 1.
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Then the ratio tends to a quantity which is smaller than ε:

lim
m→∞

m+ lε
m(lε + 1) = 1

lε + 1 < ε, (2.4)

and by the very definition of limit, there exists amε > 0 such that mε+lε
mε(lε+1) < ε.

Let us now consider the problem of finding the max-min fair solution over the
(non-convex) feasible region of flow allocation vectors corresponding to all possible
unsplittable flows (UMMF).

Proposition 2.5. The gap in terms of throughput or flow allocation between an
optimal solution to UFP-MMF and an optimal solution to UMMF can be arbitrarily
large.

Proof. Consider the example in the figure below, with k origin-destination pairs,
capacity 1 for the arcs (ai, bi), i = 2, . . . , k, capacity k(1 + δ) for the arc (a1, b1),
with δ > 0, and an arbitrarily large capacity for the other arcs.

s1

t1

a1

b1

s2

t2

a2

b2

. . .

. . .

. . .

. . .

sk

tk

ak

bk

k(1 + δ) 1 1 1

It is easy to verify that σ(φ) = (1, . . . , 1, k(1 + δ)), with a total throughput of
k(1+δ)+k−1, is an optimal solution to UFP-MMF, while σ(φ) = (1+δ, . . . , 1+δ),
with a total throughput of k(1 + δ), is an optimal solution to the UMMF. For a
fixed δ and an arbitrarily large k, these solutions differ by an additive factor of k−1
in terms of throughput. For a fixed k and an arbitrarily large δ, these solutions
differ by an additive factor of δ in terms of smallest flow allocation.

2.5 Complexity and approximability
Let us analyze the computational complexity of UFP-MMF. As in most unsplittable
flow problems, the notion of edge-disjoint paths in a graph plays a central role.

Definition 2.6 (Edge-disjont paths). Two paths p and p′ in a directed graph
G = (V,A) are said to be (pairwise) edge-disjoint if there is no edge in A that
belongs to both paths.
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Complexity and inapproximability results for UFP-MMF can be derived exploit-
ing the connection of the UFP-MMF variant where all the arc capacities are equal
to 1, with the NP-complete k-EDP problem, that consists of deciding whether a
directed graph G with k origin-destination pairs admits k edge-disjoint paths.

Proposition 2.7. UFP-MMF is NP-hard even when cij = 1, ∀ (i, j) ∈ A

Proof. By reduction from k-EDP. It suffices to observe that G admits k edge-
disjoint paths if and only if the UFP-MMF instance on G, with the same k pairs and
all cij = 1, admits an optimal UFP-MMF flow allocation with total throughput of
value k. If this is the case, since each origin-destination pair achieves the maximum
flow of value 1, k edge-disjoint paths are used.

Proposition 2.8 (2-inapproximability). UFP-MMF is NP-hard to approximate
within a factor smaller than 2.

Proof. By reduction from the NP-hard problem 2DIRPATH [FHW80], that, given
distinct vertices s1, s2, t1, t2, consists of deciding whether there exist two edge-
disjoint paths, one from s1 to t2 and the other from s2 to t2. G admits two edge-
disjoint paths if and only if the UFP-MMF instance with the same graph G, the
same two pairs and all cij = 1 admits an MMF flow allocation with total throughput
of value 2. Thus, we can map a YES instance for 2DIRPATH to a UFP-MMF
instance whose optimal flow allocation has total throughput of value 2. We can
map a NO instance to a UFP-MMF instance whose optimal flow allocation has total
throughput of value not greater than 1. Thus, unless P=NP, a 2-approximation
algorithm for UFP-MMF does not exist.

Theorem 2.9. UFP-MMF is NP-hard to approximate within a factor smaller
than m1/2−ε for any ε > 0.

Proof. In [GKR+03] the authors provide the following strong inapproximability
result for k-EDP:

Theorem 2.10 ([GKR+03]). Consider a directed graph G = (V,E) with |A| = m,
and a set K of k origin-destination pairs. Then, for any ε > 0, it is NP-hard to
distinguish whether all k pairs in K can be connected by edge-disjoint paths or at
most a fraction 1

m1/2−ε of the k pairs can be connected.

We now show that, if UFP-MMF can be approximated within any constant
factor, then we can distinguish in polynomial time between YES and NO instances
of EDP. Let us define a YES instance of k-EDP as an instance where all k pairs
can be connected by edge-disjoint path, and NO instance one where at most a
fraction 1

m1/2−ε of the k pairs can be connected. For any instance I1 of k-EDP, let
us consider the instance I2 of UFP-MMF with the same graph G, the same set of
origin-destination pairs, and cij = 1 for all arcs (i, j) ∈ A.
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For any YES instance I1, the corresponding instance I2 has a throughput of
k, since all k origin-destination pairs can be connected via edge-disjoint paths and
cij = 1 for all arcs.

Let us now turn to the instances I2 corresponding to any NO instance I1 of
k-EDP. We know that, in any such instance I1, at most k

m1/2−ε origin-destination
pairs can be routed with edge-disjoint paths. With cij = 1 for all edges (i, j) ∈ A,
the total flow for any instance I2 is bounded above by:∑

(s,t)∈K

φst ≤
k

m1/2−ε , (2.5)

since the maximum number of edge-disjoint paths is a valid upper bound for the
optimal objective value of UFP-MMF.

Suppose that UFP-MMF can be approximated within a factor ρ < m1/2−ε,
and let A be the value of the approximate solution. For a YES instance I1, we
would have

A(I2) ≥ OPT (I2)/ρ ≥ k/ρ,
where OPT (I2) is the optimal value of the corresponding UFP-MMF instance I2,
while, for a NO instance, from (2.5):

A(I2) ≤ OPT (I2) ≤ k

m1/2−ε <
k

ρ
.

We would then be able to distinguish YES and NO instances, contradicting The-
orem 2.10. It follows that, unless P = NP, UFP-MMF cannot be approximated
within a factor smaller than m1/2−ε for any ε.

Note that UFP-MMF is hard not only due to the number of alternative paths.
Indeed, even if the set of possible s-t paths were to be restricted to a subset P̄ st ⊂
P st, we show that UFP-MMF is already hard when |P̄ st| = 2. We use the same
construction used in a proof in [Kle96] and [Nil06].

Proposition 2.11. UFP-MMF is NP-hard even when cij = 1, ∀ (i, j) ∈ A and
only two alternative paths exist for each origin-destination pair.

Proof. From the NP-complete PARTITION problem of deciding, given a set S of
positive integers a1, . . . , ak, whether there is a set S′ ⊂ S such that∑

j:aj∈S′
aj = 1

2

k∑
i

ai.

An instance of PARTITION can be reduced to the instance of UFP-MMF in Fig-
ure 2.4. where the two parallel arcs connecting s to v have capacity cu = cl =
1
2
∑k
i ai, and the (v, ti) arcs have capacity ai. YES instances of PARTITION

are mapped to UFP-MMF instance whose optimal flow allocation has total value∑k
i ai, while we can map a NO instance to a UFP-MMF instance whose optimal

flow allocation has value not greater than
∑k
i ai − 1.
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Figure 2.4: Graph used in the proof of Proposition 2.11

2.6 Other structural properties of UFP-MMF op-
timal flows

In this section, some further structural properties for the optimal flow allocations
of UFP-MMF are discussed. We will derive a simple bound for the flow allocations,
and show that, in general, no stronger bounds can be obtained. Interestingly, we
also show that solutions with a larger congestion are in general not preferrable from
the point of view of the leader.

Given a routing path for each (s, t) in K, let us define congestion of the solu-
tion the maximal number of overlapping (s, t)-paths on any arc of G. As a first
observation, since only a single path can be used by each origin-destination pair,
an arc can be used by at most k pairs (solution with congestion equal to k). In
the worst case, the arc with the smallest capacity is shared among all k pairs and,
in order to be MMF, its capacity is divided equally among the pairs. Then, for
each pair (s, t) ∈ K, the optimal flow φst allocated to the pair is bounded below as
φst ≥ cmin

k , where cmin := min(i,j)∈A{cij} is the minimum capacity in the graph.
The bound is tight in the somewhat pathological case where all the flows are bound
to share the same arc, i.e., there is a bridge in the graph G between the component
S ⊂ V that contains all the origins {si}i=1,...,k and the component T ⊂ V contain-
ing the destinations {ti}i=1,...,k, with S ∩ T = ∅. With an additional assumption,
that is satisfied in all non-trivial cases, a slightly stronger bound can be derived.

Proposition 2.12 (Valid lower bound). If there is at least a solution (i.e., a path
selection) such that not all the flows share the same arc (i, j), the flows φst in an
optimal solution of UFP-MMF are bounded below as follows:

φst ≥
cmin
k − 1 ∀(s, t) ∈ K.

Proof. Shown by contradiction. Suppose that, in an optimal solution, a flow φst
has value strictly smaller than cmin

k−1 . By the properties of MMF, this can only
happen if an arc with minimum capacity has congestion greater than k − 1, i.e.,
all the k pairs share such arc. Let us call x such solution, where the arc (i, j) with
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t1 t2 t3

j

i

s3s1 s2

Figure 2.5: Example of a bridge. The only possible solution has congestion k = 3.

smallest capacity is shared among all k pairs and, in order to be MMF, the capacity
is divided equally among the pairs. All the pairs are assigned a flow cmin

k , and the
total throughput takes value k cmin

k = cmin.
By hypothesis, there is at least one feasible path p′ for a pair (s, t) which does

not contain any arc that is shared with all the other paths selected in the solution
x. Consider then the solution x′ where (s, t) is assigned the path p′, and all other
pairs use the same path as in x: we are decreasing the congestion of the solution
to k − 1. Such move results in a flow allocation where:

- the path p′ does not contain any arc where more than k − 1 paths overlap,

- all the other pairs have value cmin

k−1 .

The total flow value is at least cmin

k−1 + (k− 1) cmin

k−1 = cmin
k
k−1 which is greater than

cmin, thus x is not optimal, a contradiction. Hence cmin

k−1 is a valid lower bound
under the given assumption.

The assumption is usually fulfilled in practice, and the existence of a bridge can
be verified in linear time [Tar74]. The bound is easily shown to be tight for any
k ≥ 2.

Proposition 2.12 implies that, in unit capacity graphs, a solution with congestion
k − 1 is always preferred to one with congestion k. However, this property cannot
be extended to graphs with arbitrary congestion. Assume one could determine a
solution with minimum congestion on G2, and let us indicate by q its congestion.
Unfortunately, such solution is not necessarily optimal for UFP-MMF, and the
value cmin

q is not, in general, a valid lower bound on the flow allocation for an
optimal solution of UFP-MMF: this is because a solution with smaller congestion
does not necessarily yield an UFP-MMF allocation with larger total throughput
than one with higher congestion. This is shown in the following example.

2The Congestion Minimization problem is known to be NP-complete [ACG+10].
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t1 t2 t3
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s3s1 s2

s4

t4

s5

t5

p1 p2

Figure 2.6: Example where a solution with higher congestion is preferred to one
with lower congestion.

Example 2.13. Consider the graph with unit arc capacities and the 5 origin-
destination pairs reported in Figure 2.6. Note that the path for φ1, φ2, φ4, φ5 is
unique. The flow φ3 can be routed over the path p1 or p2. Routing over p1,
the congestion of the solution is 3. The resulting MMF flow allocation vector is
φ = ( 1

3 ,
1
3 ,

1
3 , 1, 1) with a total throughput τ = 3, and is optimal for UFP-MMF. If

φ3 is routed over the path p2, the congestion of the solution is only q = 2, which
is the minimum possible congestion. However, the resulting MMF flow allocation
vector is φ′ = ( 1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ), with a smaller total throughput τ = 2.5. Observe

that σ(φ′) �lex σ(φ), and indeed φ′ is the overall max-min fair solution (UMMF).
Note also that the value cmin

q = 1
2 is not a valid lower bound for the flow allocation

values, since the optimal allocation vector contains values equal to 1
3 .

Similar results show that, although one would like, in principle, to avoid solu-
tions with a high congestion, it may pay off for the leader to have a high congestion
for a few origin-destination pairs – in an attempt to move as far from the overall
max-min fairness as possible, towards the maximization of the total throughput.

2.7 Price of fairness
Proposition 2.4 states that the gap between the value of the optimal solution of
UFP, where the max-min fairness constraint is dropped, and the UFP-MMF one
can be arbitrary large. It is possible to derive a tight lower bound on this gap, which
is also known as price of fairness. The price of fairness, as defined in [BFT11], is the
relative efficiency loss under a fair allocation compared to the one that maximizes
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the sum of the allocations (social optimum), i.e., the optimal solution to UFP. We
will adopt in this section a notation which is close to the one in [BFT11].

Let X be the set of feasible allocations, and S(X) ∈ X the fairest alloca-
tion vector according to the fairness scheme in consideration. Let us denote with
FAIR(X;S) the sum of allocations of the fair solution S(X):

FAIR(X;S) = 1TS(X). (2.6)

The price of fairness, denoted by PoF (X;S), is defined as the relative reduction
in the sum of allocations under the considered fairness scheme S, compared to the
value EFF (X) of the efficient, or utilitarian, solution, that maximizes the sum of
the allocations:

PoF (X;S) = EFF(X)− FAIR(X;S)
EFF (X) . (2.7)

Values closer to 0 are preferable for the price of fairness, meaning that the fairness
criterion is able to combine high system efficiency and fairness.

Let us indicate with SUFP−MMF the fairness scheme based on the bilevel UFP-
MMF, where fairness is enforced only on the second level of the problem (flow allo-
cation). EFF (X) is the value of the optimal solution of the unsplittable maximum
multicommodity flow problem UFP. The PoF measures exactly what we lose when
we impose fairness on the second level.

Proposition 2.14 (Price of fairness). The price of SUFP−MMF for UFP with
k ≥ 2 users and unit arc capacities is bounded by:

PoF (X;SUFP−MMF ) ≤
{

1− 4k
(k+1)2 if k is odd

1− 4k
k(k+2) if k is even.

(2.8)

The bound is tight for all k ≥ 2.

Proof. Assume that UFP has optimal value:

EFF (X) = m < k.

We have seen that UFP with unit capacities is equivalent to the problem of finding
edge-disjoint paths in a graph. Then, there exists at least one optimal solution
wherem users have pairwise edge-disjoint paths with flow allocation of value exactly
1, while there are no edge-disjoint paths for the remaining l = k −m users, whose
allocated flow value is 0.

Now, consider the paths of such utilitarian solution. Clearly, the largest possible
congestion for each of the k paths is l+ 1, since m paths are pairwise edge-disjoint,
and only the other l paths can intersect. This implies that, under max-min fair-
ness (i.e., applying the water-filling algorithm over the selected paths), the flow
allocation for each user is not smaller than 1

l+1 . Then, the total utility under
SUFP−MMF is:

FAIR(X;SUFP−MMF ) ≥ k

l + 1 = k

k −m+ 1 . (2.9)
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This is actually a tight bound, in the case where all of the remaining l users can
only choose paths that intersect with all the other k selected paths, e.g., see Figure
2.3. The price of fairness is then bounded by:

PoF (X;SUFP−MMF ) ≤ 1− k

(k −m+ 1)m ∀ 1 ≤ m ≤ k. (2.10)

Minimizing k
(k−m+1)m over 1 ≤ m ≤ k, for m = k+1

2 gives, if k is odd, the lower
bound:

PoF (X;SUFP−MMF ) ≤ 1− 4k
(k + 1)2 . (2.11)

and, in case k is even, for either m =
⌈
k+1

2
⌉
or m =

⌊
k+1

2
⌋

PoF (X;SUFP−MMF ) ≤ 1− 4k
k(k + 2) . (2.12)

The bounds for PoF are tight, and can be attained by considering a linear
graph as in Figure 2.3, with k users and m arcs, with m =

⌈
k+1

2
⌉
. As a nontrivial

example, take k = 4 and m = d5/2e = 3. The utilitarian solution has value
EFF (U) = m = 3, while the optimal solution of UFP-MMF has total throughput
of value 2, matching the 1

3 bound.

An equivalent result can also be independently derived from Theorem 1 in
[BFT11], that, although being valid only for a convex and compact utility set U ,
can be adapted to UFP-MMF. Figure 2.7 displays the bound as k grows. Already
with k = 20, the optimal solution for UFP-MMF can be, in theory, 80% less efficient
than the optimal solution of UFP.

10 20 30 40 50 60 70

0.2

0.4

0.6

0.8

1.0

Figure 2.7: PoF bound as the number of users k increases.

2.8 Related problems in game theory
From a game theoretic point of view, games subject to max-min fair flow allocation
have been studied in the last few years. Let us consider the sequential game MMF-
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SEQ, first introduced in [YXF+13] with the name MAXBAR, with a set of players
corresponding to the set of origin-destination pairs K. Assume the game starts
with a path assigned to each player. The strategy of a player corresponds to the
selection of its path. At each turn, a player i selects a single (si, ti) path, either
the current or a different one, such that its own utility, i.e., its flow allocation, is
maximized (best response). Once the new path is selected, the flow is immediately
re-allocated over the paths according to the MMF principle (i.e., applying the
water-filling algorithm). The computation of the (selfish) best-response consists of
determining the widest s-t path over the graph where the arc capacities have been
modified according to the available capacity-to-be, i.e., the capacity that a player
would observe were that arc selected. The authors in [YXF+13] show that this
quantity can be computed in polynomial time, and that MMF-SEQ is guaranteed
to converge to a pure Nash equilibrium. In this case, the equilibrium obtained by
non-cooperative users is, in general, not efficient – i.e., it is not the solution with
the optimal social utility, incurring what is usually called price of anarchy (PoA)
[KP99]. The problem of finding the social optimum in the MMF-SEQ setting is
exactly equivalent to UFP-MMF, although the authors do not attempt to solve the
problem. Notice that the social optimum is, in general, not a Nash equilibrium
for MMF-SEQ: there can be at least a user that might have an interest to change
selfishly its path, thereby increasing its flow allocation but decreasing the total
throughput (social utility).

An extension of this work is discussed by Harks et al. in [HHSS13, HHSS14],
where the more general class of progressive filling games is introduced and analyzed.
This class accounts also for games where the water filling algorithm is applied
raising players’ allocations at different rates. Along with further results on the
PoA, the authors show that, for this class of games, strong equilibria always exist.
A strong equilibrium is a stricter and more robust notion of Nash equilibrium, where
no coalition of the players can change their routes and increase the allocation of
each of its members.
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CHAPTER3
Mixed-integer programming approaches for

UFP-MMF

UFP-MMF is a mixed-integer bilevel problem, and, as such, it is very challenging
to solve. The lower-level problem, for fixed paths, is a sorted lexicographical max-
imization problem, where it is difficult to use primal-dual relations to characterize
its optimal solutions. However, it has two crucial properties that stem from the
definition of max-min fairness applied to network flows: i) once the paths have been
selected, the feasible set of the second-level problem is convex, hence the MMF flow
allocation is unique; ii) the problem of finding the max-min fair solution can be
solved efficiently over fixed paths via the water filling algorithm. These properties
suggest that, in a way, the second-level problem is easy on the set defined by the
upper-level.

This chapter describes how, from such algorithm, it is possible to derive an ex-
plicit characterization of the max-min fair allocations. This allows us to recast the
bilevel problem as a single-level problem, where the second-level max-min fair prob-
lem is replaced by its optimality conditions. Nevertheless, the resulting single-level
mixed-integer linear problem is still challenging to solve, as it is, in essence, an un-
spittable multicommodity flow with additional global constraints. Two MIP-based
exact approaches are proposed: a branch-and-cut algorithm for an arc formulation
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of the problem, and a branch-and-price for a path formulation. Since the problem
is very challenging to tackle with pure exact methods, we also describe heuristics
to find good feasible solutions.

For all the approaches described in this chapter, computational results will be
reported and discussed in Chapter 6.

3.1 Characterization of the max-min fair alloca-
tion

In this section, we will characterize the optimality conditions of the lower level
MMF-allocation problem starting from the definition of bottleneck arc.

Definition 3.1. Given a flow allocation, an arc (i, j) ∈ A is bottleneck for the
origin-destination pair (s, t) ∈ K if:

1. the arc capacity cij is saturated,

2. the flow allocated to (s, t) is greater than or equal to the value of the flow
allocated to any other (o, d)-pair on the arc (i, j).

On given routing paths, the max-min fair allocation can be determined via the
water filling algorithm (Alg. 1.4). At each iteration, the water filling algorithm
finds at least a bottleneck arc for an origin-destination pair, suggesting a simple
characterization of the max-min fair flow allocation on given paths that was first
described by Bertsekas and Gallager in [BG92, Chap. 6].

Proposition 3.2. Given a directed graph G = (V,A), a set K of origin-destination
pairs and a simple path pst for each (s, t) ∈ K, a feasible flow allocation vector φ is
max-min fair if and only if there is at least a bottleneck arc for each pair (s, t) ∈ K.

For completeness, since in [BG92] a formal proof is not included, one is easily
given.

Proof. Consider an allocation vector φ, and suppose that at least one (s, t) pair
has no bottleneck arcs. If its routing path pst contains no saturated arc, then the
flow allocated to (s, t) can be increased, contradicting the fact that the solution is
optimal. If pst contains a saturated arc where φst does not have the largest value,
then it is possible to decrease the value of another flow φod, larger than φst, to
increase φst yielding a fairer solution.

Viceversa, consider a solution with allocation φ′, where every origin-destination
pair has a bottleneck arc, and assume it is not max-min fair. Then, there must be
another solution with allocation φ′′ such that σ(φ′′) � σ(φ′). For this to happen,
at least one allocation φ′st must be increased. Since all pairs have a bottleneck
arc, increasing the allocation of (s, t) implies decreasing at least an allocation to
another pair whose path contains a bottleneck arc of (s, t). But, on a bottleneck
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arc, φ′st ≥ φ′od for any (o, d) 6= (s, t), thus the resulting sorted flow allocation vector
would be lexicographically smaller than the previous, σ(φ′′) ≺ σ(φ′). Hence, φ′ is
max-min fair.

The MMF solution is unique, since the set of feasible flow allocation vectors
with fixed paths is convex. According to Proposition 3.2, the second level problem
can be replaced with a set of linear constraints and binary variables that ensure
the existence of a bottleneck arc for each (s, t) pair, as first noted in [Tom05] and
later in [ACCG13] and [ACT14].

Let us indicate with fstij the variables corresponding to the value of the (s, t)-
flow allocation on the arc (i, j) ∈ A. For each (s, t) ∈ K, we denote with ystij the
binary variables such that, if ystij = 1, then (i, j) is bottleneck. Then, for each (s, t),
at least one ystij must be equal to 1:∑

(i,j)∈A

ystij ≥ 1. (3.1)

We can characterize a bottleneck arc for pair (s, t) writing the bottleneck properties
for an arc (i, j), with capacity cij ≥ 0, as the following complementarity conditions:

(
∑

(o,d)∈K

fodij − cij)ystij = 0 (3.2)

(fstij − fodij )ystij ≥ 0 (o, d) ∈ K, (o, d) 6= (s, t), (3.3)

where (3.2) ensures that, if an arc is bottleneck, it is saturated, and (3.3) impose
that, if (i, j) is bottleneck for the pair (s, t), then the flow allocated to (s, t) must
be larger or equal to that allocated to all other pairs using arc (i, j). Bilinear
Constraints (3.2)–(3.3) can be linearized using the upper bound cij on the value
fstij , obtaining the following polyhedral characterization of the MMF allocation,
which is valid for unsplittable flows over given selected paths:∑

(i,j)∈A

ystij ≥ 1 (s, t) ∈ K (3.4)

∑
(o,d)∈K

fodij ≥ cijystij (s, t) ∈ K (3.5)

fstij ≥ fodij + cij(ystij − 1) (s, t) ∈ K, (o, d) ∈ K, (s, t) 6= (o, d). (3.6)

The number of necessary constraints can be reduced introducing a variable uij :=
max{fstij } representing the maximum flow allocation on the arc (i, j). Then, Con-
straints (3.6) can be replaced by:

uij ≥ fstij (s, t) ∈ K (3.7)
fstij ≥ uij + cij(ystij − 1) (s, t) ∈ K, (3.8)

where the first inequality imposes that uij is an upper bound, and the second
ensures that fstij = uij when the arc (i, j) is bottleneck for the pair (s, t).
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3.2 (Partial) single-level arc formulation
A single-level mixed-integer programming formulation can be obtained by formu-
lating a standard unsplittable multi-commodity flow model, where the objective
function is the total throughput over the graph. Constraints (3.4)–(3.6) are added
to the program in order to impose max-min fairness on the flow allocations.

Let us denote with xstij the binary arc variables that take value 1 if the arc
belongs to the selected s-t path, and 0 otherwise. Then, we can formulate the
problem as follows:

max
∑

(s,t)∈K

φst (3.9)

s.t.

∑
(i,j)∈δ+(i)

fstij −
∑

(j,i)∈δ−(i)

fstji =


φst if i = s

−φst if i = t

0 else
i ∈ V, (s, t) ∈ K (3.10)

∑
(s,t)∈K

fstij ≤ cij (i, j) ∈ A (3.11)

fstij ≤ cijxstij (i, j) ∈ A, (s, t) ∈ K (3.12)∑
(h,j)∈δ+(h)

xsthj ≤ 1 h ∈ V, (s, t) ∈ K (3.13)

∑
(i,j)∈A

ystij ≥ 1 (s, t) ∈ K (3.14)

∑
(o,d)∈K

fodij ≥ cijystij (i, j) ∈ A, (s, t) ∈ K (3.15)

uij ≥ fstij (i, j) ∈ A, (s, t) ∈ K (3.16)
uij ≤ fstij + cij(1− ystij ) (i, j) ∈ A, (s, t) ∈ K (3.17)
fstij , φst, uij ≥ 0 (i, j) ∈ A, (s, t) ∈ K (3.18)
ystij , x

st
ij ∈ {0, 1} (i, j) ∈ A, (s, t) ∈ K. (3.19)

Constraints (3.10)–(3.11) are standard flow conservation and capacity con-
straints. Constraints (3.12) ensure that the flow is 0 if the arc is not selected.
Constraints (3.13) impose that only one path is chosen. Constraints (3.14)–(3.17)
impose that the flow vector is MMF for the selected paths, according to Propo-
sition 3.2. More specifically, Constraints (3.14) guarantee that at least an arc is
bottleneck for each (s, t). Constraints (3.15) ensure that arc (i, j) is saturated if it
is bottleneck for some pair (s, t). Constraints (3.16) make sure that uij is equiva-
lent to the largest flow allocated over arc (i, j). Constraints (3.17) impose that the
flow of a pair (s, t) through its bottleneck arc (i, j) is as large as the largest flow
through (i, j) for all the other pairs.
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Remarks:

1. Although all the ingredients of UFP-MMF are included, it must be noted that
Formulation (3.9)–(3.19) is not yet sufficient to guarantee a correct solution
for the problem, as it does not prevent subtours that can arise in a solution.
The issue will be discussed in the following section.

2. A variable ystij = 1 indicates a sufficient, but not necessary, condition for an
arc (i, j) to be bottleneck for (s, t). In other words, in a feasible solution,
an arc in a selected path pst might satisfy the bottleneck conditions, but its
corresponding variable ystij might have value 0 – provided there is at least
another bottleneck arc in pst with ystij = 1. This does not invalidate the
correctness of the MMF conditions: it is not necessary to count the number of
bottlenecks in a (s, t) path, it is sufficient to impose that one exists. However,
this introduces a degree of symmetry in the formulation.

3. The bottleneck Constraints (3.14)–(3.17) are global: even when the paths
have been fixed, it is not possible to consider each origin-destination pair
independently, since each flow allocation cannot be determined without con-
sidering the allocations of all the other flows.

4. The bottleneck Constraints (3.14)–(3.17) have a very poor linear relaxation.
Consider a solution (φ, x, f, u) belonging to the set defined by (3.10)–(3.13)
and (3.18)–(3.19), with x integer, and let us denote by pst the path for each
pair (s, t) induced by the arc incidence vector x. Then, if the paths are
sufficiently long, it is always possible to construct a bottleneck vector y ∈
R|A|×|K|+ which satisfies the bottleneck constraints simply by taking:

ystij :=
{

1
|pst| if xstij > 0
0 otherwise,

where |pst| is the length of the (s, t)-path. Constraints (3.14) are clearly
satisfied, since

∑
(i,j)∈A y

st
ij = |pst| 1

|pst| = 1, while Constraints (3.15) are
satisfied if

∑
(o,d)∈K f

od
ij ≥ cij

1
|pst| , and Constraints (3.16) are satisfied if

uij ≤ fstij + cij(1− 1
|pst| ). Both conditions hold true if 1

|pst| is sufficiently close
to 0, that is, if the path pst is sufficiently long.

3.3 Existence of subtours
The formulation presented in the previous section is not sufficient to correctly
describe the feasible region of UFP-MMF, as it does not prevent the formation of
subtours (or cycles). In a classic maximum-throughput unsplittable multicommod-
ity flow problem (UFP), subtours do not affect the optimal value of the objective
function, and can be removed a posteriori from any optimal solution yielding an
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equivalent solution, so it is not necessary to account for them. However, subtours
may (and do) arise when dealing with the MMF allocation at the lower level.

We remark again that the solutions with maximum throughput, if fairness on
the flow allocation is not imposed (UFP), are generally not fair, and involve several
allocations with value 0. Then, the reason a solution for Formulation (3.9)–(3.19)
might have a subtour, unless explicitly prevented, is to bypass the max-min fairness
constraints and allow (almost) arbitrary flow allocations to a subset of origin-
destination pairs.

We have observed that this can be done mainly in two ways: i) setting an
artificial bottleneck arc on a disconnected subtour: once a bottleneck arc has been
imposed on a disconnected subtour, the flow allocation on the main s-t path is free;
ii) using subtours with high congestion to decrease artificially the flow allocated to
pairs which would “hurt” the total throughput.

Consider the example in Figure 3.1. The leader might want to select the a–b–c
cycle for the origin-destination pair (s, t), and select the arc (a, b) as its bottleneck
arc. Doing so, the flow φst, i.e., the one leaving s and entering t, is free from
fairness constraints along the path s–e–t, because the bottleneck constraints are
already fulfilled in the subtour.

s te

a b

c

Figure 3.1: The subtour a–b–c creates an artificial bottleneck arc (a, b), so that
the flow allocated on the main s-t path is free from fairness constraints.

In a similar fashion, see Figure 3.2, a subtour might be used to drive down a
flow φst, if it is desirable to have as small an allocation to (s, t) as possible. To
see why, suppose that there are “virtuous” origin-destination pairs1, using either
arc (a, c) or (c, t), whose flow allocation the leader would like to increase. Then,
the leader might want to decrease the flow allocated to the pair (s, t), which uses
simultaneously arcs (s, a), (a, c) and (c, t), overlapping with the virtuous flows.
One way to do so, preserving the bottleneck constraint, is to route other flows
(dashed line in the figure) along the subtour s–a–b, so that the arc (s, a) becomes
a bottleneck for the pair (s, t) with an artificially inflated congestion, resulting in
a small flow allocation φst and, potentially, allowing for a higher allocation to the
other flows using the arcs (a, c) and (c, t).

Unfortunately, this means that it is necessary to introduce subtour elimination
constraints for each (s, t) ∈ K. One way to do so is to prevent the subtours in the

1Intuitively: origin-destination pairs for which there exist paths with low congestion and high
capacity.
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s a c t

b

Figure 3.2: The subtour s-a-b is used to drive down artificially the flow φst. Then,
the allocation of flows, e.g., passing through (c, t) but not through (s, a), can be
increased.

arc formulation itself. We will then see that an alternative approach is to rewrite
the MILP with a path formulation and use a column generation approach.

3.3.1 Subtour elimination in the arc formulation
To prevent subtours in the arc formulation, we can introduce subtour elimination
constraints for each (s, t) ∈ K. While the s-t paths are generally not Hamiltonian,
techniques similar to the ones applied for the Travelling Salesman Problem can
be adapted to our case. More precisely, it is possible to adopt all the methods
that are valid to model the elementary longest (or shortest) path problem as a
mixed-integer program. The discussion on integer programming formulations for
elementary-path problems deserves a chapter on its own, and we refer the reader to
Chapter 5 for the details. For sake of completeness, we give here a short summary
of the two main approaches that can be used.

Extended formulations

One way to prevent subtours entails the use of extended formulations with a poly-
nomial number of auxiliary variables and constraints.

The strongest known extended formulation is based on multicommodity flows,
and is obtained considering, for each (s, t) pair, an auxiliary unit flow qhst to be
delivered to each node h belonging to the s-t path:

qhstij ≤ xstij
h ∈ Vs,

(i, j) ∈ A, (s, t) ∈ K

∑
(i,j)∈δ+(i)

qhstij −
∑

(j,i)∈δ−(i)

qhji =


zsth if i = s

−zsth if i = h

0 else

i ∈ V,
h ∈ Vs,

(s, t) ∈ K∑
(i,h)∈δ−(h)

xstih = zsth h ∈ Vs, (s, t) ∈ K

qhstij , zsth ≥ 0,

thus guaranteeing connectedness and elementarity. The formulation is very strong,
although at the cost of O(|V ||A|) variables and constraints for each (s, t) ∈ K. A
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similar idea is used in the classic extended formulation for the asymmetric travelling
salesman problem of Wong [Won80] and Claus [Cla84]. In [IMM09], an equivalent
flow-based formulation for the elementary shortest path problem is discussed.

Cutting planes

An alternative is to use a cutting plane approach to prevent subtours: the experi-
ence of the TSP teaches that, in a branch-and-cut setting, dynamic separation of
subtour elimination constraints (SEC) is likely to be computationally more attrac-
tive. The main idea is to strengthen the classic cutset inequalities for the ATSP,
obtaining the following Generalized Cutset inequalities, as also noted in [DI14]:∑

(i,j)∈δ+(S)

xstij ≥
∑

(h,j)∈δ+(h)

xsthj h ∈ S ⊆ V \ {s, t}, |S| ≥ 2. (3.20)

The inequalities impose that the cutset induced by any subset S reached by a path
must have cardinality greater than 1. The cutting planes can be generated either on
incumbents, identifying strongly connected components in the subgraph induced
by the variables xstij , and on fractional solutions, solving a sequence of Min-Cut
problems.

l-cycle elimination

It is also possible to explicitly add a subset of the subtour elimination constraints
for subtours of bounded length. Specifically, it is sometimes convenient to add
elimination constraints for 2-cycles (antisymmetric arcs),

xstij + xstji ≤ 1 ∀ i, j : (i, j), (j, i) ∈ A, (s, t) ∈ K, (3.21)

and for 3-cycles (triangles),

xstij + xstjl + xstli ≤ 2 ∀ i, j, l : (i, j), (j, l), (l, j) ∈ A, (s, t) ∈ K. (3.22)

The number of 2-cycles in a graph is O(|A|), exactly |A|2 if each arc has an antisym-
metric arc, and sometimes it appears convenient to insert them in the formulation.
The number of 3-cycles is O(|A|2) or O(|V |3) – exactly 2n(n−1)(n−2)

6 in a complete
digraph – although on small-density graphs it is clearly much smaller. The number
of additional constraints in UFP-MMF will be, respectively, of the order of O(|A|k)
and O(|A|2k).

3.4 Valid bounds and inequalities
We describe here valid bounds and inequalities that can be applied to tighten the
arc formulation of UFP-MMF. As we will see in the section devoted to computa-
tional results, only some of them are effective in improving the performance of the
branch-and-bound algorithm. Nevertheless, we believe all the explored attempts
are worth being briefly discussed.
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Flow upper and lower bounds

A valid upper bound on the flow values φst is given by the value of the maximum
unsplittable flow between node s and t. This is also known as the widest path or
bottleneck shortest path problem (see, e.g., [Sch03, Chapter 8.6] and [KP06]), as it
is equivalent to finding the path whose smallest-capacity arc is the largest, that is:

φ̄st = max
p∈P st

min
(i,j)∈p

cij , (3.23)

where P st is the set of all s-t elementary paths. The problem can be solved in
polynomial time with an adaptation of Dijikstra’s algorithm for shortest paths,
replacing the label update formula for a node i by the rule:

l[i] := max
i∈S
{min{l[j], cji}}, (3.24)

where S is the set of visited nodes so far. The bound can be used to restrict
the domain of the φst variables, and also to strengthen some of the constraints.
Specifically, for the activation constraints (3.12) we can use, in place of cij , the
tighter upper bound min{cij , φ̄st}, obtaining the following inequality:

fstij ≤ min{cij , φ̄st}xstij (i, j) ∈ A, (s, t) ∈ K. (3.25)

These inequalities are similar to the so-called “strong inequalities” in network de-
sign [CCG09], where, however, the demand dst for an (s, t) pair is fixed (which is
clearly an extremely tight bound, as φst = dst in any feasible solution). In our
case, φ̄st is, in general, significantly weaker.

On the other hand, as we mentioned, there exists a simple valid lower bound
on the value of the flow allocations, which is tight in the case where all the flows
are routed over the same arc with minimum capacity:

φst ≥
cmin
k

(s, t) ∈ K, (3.26)

where cmin := min(i,j)∈A cij . If the instance has no S−T bridges (see Section 2.6),
the slightly stronger lower bound is valid:

φst ≥
cmin
k − 1 (s, t) ∈ K. (3.27)

It is worth noting that these are, in general, the tightest upper and lower bounds
for the optimal flow values, unless some further assumptions on the structure of
the graph and the set K are made. The lower bound can also be seen as a cover
inequality,

∑
(s,t)∈K x

st
ij ≤ k − 1 for each arc (i, j) ∈ A.

Bottleneck consistency inequality

An arc can be bottleneck only if it is selected, thus the following inequality that
links the y and x variables is valid:

ystij ≤ xstij (i, j) ∈ A, (s, t) ∈ K. (3.28)

37



Chapter 3. Mixed-integer programming approaches for UFP-MMF

Although there is a polynomial number of such inequalities, separating them ap-
pears to be the best option from a computational perspective.

Arc variables balance

In an optimal solution, the conservation of the value of the x variables is implied
by their integrality and Constraints (3.10)–(3.13). However, it is useful to state
explicitly the balance constraints on x:

∑
(i,j)∈δ+(i)

xstij −
∑

(j,i)∈δ−(i)

xstji =


1 if i = s

−1 if i = t

0 else
i ∈ V, (s, t) ∈ K, (3.29)

in order to tighten the linear programming relaxation.

Flow constraints

Due to the (unsplittable) flow conservation, in an optimal solution the flow on an
arc (i, j) for an origin-destination pair (s, t) is either 0 or φst. The following bilinear
constraints are, therefore, valid:

fstij = φstx
st
ij . (3.30)

The constraints can be linearized by McCormick’s envelope [McC76] as follows:

fstij ≤ min{φst, φ̄stxstij} (i, j) ∈ A, (s, t) ∈ K (3.31)
fstij ≥ max{0, φst − φ̄st(1− xstij)} (i, j) ∈ A, (s, t) ∈ K (3.32)

where φ̄st is a valid upper bound on φst, e.g., the one obtained computing the
(s, t)-widest path. In (3.31), it is possible to replace φ̄st with min{cij , φ̄st}, ob-
taining (3.25).

Nonlinear MMF flow expression

Let us denote with U(i, j) ⊆ K the set of origin-destination pairs that share the
arc (i, j), and with B(i, j) ⊆ U(i, j) the set of pairs for which the arc (i, j) is
bottleneck. By the definition of MMF and bottleneck arc, the flow quantity fstij
for any (s, t) ∈ U(i, j) is bounded above by the value of the flows of the pairs in
B(i, j). Such value is obtained by equally dividing among the pairs in B(i, j) the
capacity of (i, j) decreased by the flows not in B(i, j), as follows:

(s, t) ∈ B(i, j)⇒ fstij =
cij −

∑
(o,d)/∈B(i,j) f

od
ij

|B(i, j)| . (3.33)

that can be rewritten with the y variables as:

ystij = 1⇒ fstij =
cij −

∑
(o,d)∈K f

od
ij (1− yodij )∑

(o,d)∈K y
od
ij

. (3.34)
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This equation implies two valid inequalities. First of all, it provides an upper bound
for all (s, t) ∈ U(i, j):

fstij ≤
cij −

∑
(o,d)∈K f

od
ij (1− yodij )∑

(o,d)∈K y
od
ij

, (3.35)

that can be rewritten as:

fstij
∑

(o,d)∈K

yodij ≤ cij −
∑

(o,d)∈K

fodij +
∑

(o,d)∈K

fodij y
od
ij . (3.36)

In order to linearize the expression, let us introduce the continuous variable fstodij ≥
0, defined as

fstodij = ystij f
od
ij . (3.37)

We can then write:∑
(o,d)∈K

fstodij ≤ cij −
∑

(o,d)∈K

fodij +
∑

(o,d)∈K

fododij , (3.38)

with the additional linearization constraints:

fstodij ≤ min{fodij , cijystij } (i, j) ∈ A, (s, t) ∈ K, (o, d) ∈ K (3.39)
fstodij ≥ max{0, fodij − cij(1− ystij )} (i, j) ∈ A, (s, t) ∈ K, (o, d) ∈ K. (3.40)

Another valid inequality is the following, providing a lower bound for the pairs
(s, t) ∈ B(i, j):

fstij ≥ ystij
cij −

∑
(o,d)∈K f

od
ij (1− yodij )∑

(o,d)∈K y
od
ij

, (3.41)

that can be rewritten as:

fstij
∑

(o,d)∈K

yodij ≥ ystij cij − ystij
∑

(o,d)∈K

fodij + ystij
∑

(o,d)∈K

fodij y
od
ij − kcij(1− ystij ). (3.42)

In order to linearize the expression, let us introduce the continuous variable fstodbeij ≥
0, defined as

fstodbeij = ybeij f
stod
ij

We can then write:∑
(o,d)∈K

fstodij ≥ ystij cij −
∑

(o,d)∈K

fstodij +
∑

(o,d)∈K

fododstij − kcij(1− ystij ), (3.43)

with the additional linearization constraints:

fstodbeij ≤ min{fstodij , cijy
be
ij } (i, j) ∈ A, (s, t), (o, d), (b, e) ∈ K (3.44)

fstodbeij ≥ max{0, fstodij − cij(1− ybeij )} (i, j) ∈ A, (s, t), (o, d), (b, e) ∈ K (3.45)

Both families of valid inequalities (3.38) and (3.43), alongside with the auxiliary
variables and constraints necessary for the linearization, can be added in order to
strengthen the formulation.
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Slack inequalities

In a max-min fair solution, each bottleneck arc is saturated by the flows that share
the arc. The following condition is thus valid for each arc that is bottleneck for at
least one flow: ∑

(s,t)∈K

fstij = cij ∀(i, j) ∈ A s.t.
∑

(s,t)∈K

ystij ≥ 1. (3.46)

Conversely, for the arcs which are not bottleneck for any origin-destination pair it
holds: ∑

(s,t)∈K

fstij < cij ∀(i, j) ∈ A s.t.
∑

(s,t)∈K

ystij = 0. (3.47)

Let us introduce the nonnegative slack variables sij that represent the slack on an
arc (i, j) between its capacity cij and the sum of the flow values over (i, j), i.e., the
available capacity on (i, j). Equation (3.46) and (3.47) can be rewritten as follows:∑

(s,t)∈K

fstij + sij = cij ∀(i, j) ∈ A, (3.48)

where the slack variable sij needs to be linked with the bottleneck variables. Specif-
ically, it is necessary to impose that:

sij > 0 =⇒ ystij = 0 ∀(i, j) ∈ A, (s, t) ∈ K, (3.49)

which can be written equivalently as:

sij
∑

(s,t)∈K

ystij = 0 ∀(i, j) ∈ A. (3.50)

Constraint (3.50) can also be disaggregated into the constraints:

sijy
st
ij = 0 ∀(i, j) ∈ A, (s, t) ∈ K. (3.51)

Let us linearize the equality. We can express sij as:

sij = cij −
∑

(s,t)∈K

fstij ∀(i, j) ∈ A, (3.52)

that can be substituted into (3.51), yielding the constraints:

ystij cij − ystij
∑

(o,d)∈K

fodij = 0 ∀(i, j) ∈ A. (3.53)

This allows us to use carry out the linearization using the same variables fstodij

defined in (3.37).
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Symmetry

The formulation for UFP-MMF is symmetric. If, in a solution, an (s, t) path has
more than one arc fulfilling the bottleneck conditions, all the solutions with at least
one of those bottleneck arcs with ystij = 1 are equivalent. Breaking symmetry is
generally useful in mixed-integer programming, see e.g. [Mar10]. In order to do so,
it is necessary to establish a strict implication between the value of the y variables
and the bottleneck conditions.

This is made difficult by the fact that the bottleneck conditions involve a com-
parison of fractional values. Specifically, we need to distinguish whether two flows
have the same or different values. This means using a value ε > 0 and introducing
the constraint:

fstij ≤ uij − ε(1− ystij ), (3.54)

imposing that the (s, t) flow is strictly smaller than the largest one on (i, j) if it is
not bottleneck for (s, t). However, it remains to be seen if there exists such an ε
that guarantees the exactness of the solution. It is necessary to find a bound on
the difference between two possible flow values sharing the same arc. By the MMF
conditions, the largest flow value in a saturated arc takes value

cij −
∑

(o,d)/∈B(i,j) f
od
ij

|B(i, j)| ,

where B(i, j) is the set of pairs for which (i, j) is bottleneck. Since we are dealing
with unsplittable flows and every pair has a bottleneck, the k flow values in a
feasible solution are univocally determined by the path selection. The number of
possible path selections is finite, so is the set of feasible flow values. Then, in
principle, by taking ε smaller than the difference of any two feasible flow values,
the exactness of the formulation is guaranteed. However, obtaining a non-trivial
smaller bound on ε is hard, and, in practice, we have observed optimal flow vectors
where the smallest difference between two allocations is smaller 10−6cmin.

Other valid inequalities

To the best of our knowledge, the literature does not contain much work on elastic
unsplittable multicommodity flow problems, that is, problems where the demands
of the sink nodes are not given, but must be maximized. The demands are typically
known, and a cost function is to be minimized: the presence of fixed demands allows
to generate strong valid inequalities.

A class of lifted cover inequalities for unspittable multicommodity flow problems
is proposed in [BJN+98] and later extended in [Alv05]. They are based on the valid
arc capacity inequality: ∑

(s,t)∈K

dstx
st
ij ≤ cij
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where dst is the demand for the pair (s, t) ∈ K, and can be replaced by any lower
bound on the flow φst. However, in UFP-MMF we have only a valid lower bound
for φst that is not strong enough to yield inequalities that are not trivially satisfied.

For some network design problems that share similarities with UFP-MMF, the
authors of [CCG09] mention four classes of nontrivial valid inequalities: cover,
minimum cardinality, flow cover and flow pack inequalities. All of them are based
on the following valid cutset inequality:∑

(i,j)∈δ(S)

cijzij ≥ dδ(S),

where zij is the binary variable that takes value 1 if the arc (i, j) is used by any flow
and 0 otherwise, δ(S) is the cutset corresponding to the subset of nodes S ⊂ V , and
dδ(S) is a lower bound on the amount of flow that must circulate across the cutset
in any feasible solution. Clearly, the right-hand side is easily computed when the
demands dst are given, but in our case we do not have good (and easy to compute)
lower bounds on the flow allocations φst.

These cases indicate that the absence of given flow demands makes it difficult
to generate strong knapsack or cutset-like valid inequalities. This was confirmed
by preliminary experiments (whose details we omit) with the cover inequalities
of [BJN+98].

Attempts with reformulation-linearization technique

The set of MMF bottleneck constraints is another source of difficulty for MILP-
based approaches, since it generally yields a linear relaxation solution where the
bottleneck variables ystij are highly fractional (see Remark 4 at page 33). To approxi-
mate the convex hull of the polyhedron defined by the MMF constraints (3.14),(3.15)
and (3.17), we can apply Sherali-Adams’ reformulation-linearization technique (RLT)
for mixed-integer 0-1 programming problems [SA94]. The technique consists in
first reformulating the problem by constructing redundant nonlinear constraints,
obtained by multiplying the constraints by polynomial factors of the n binary vari-
ables and their complements. Then, the constraints of the reformulated problem
are linearized by substituting a continuous variable for each nonlinear term. De-
pending on the degree of the polynomial factors used in the reformulation, different
levels of RLT can be obtained: each level of the hierarchy provides a program whose
continuous relaxation is at least as tight as the previous level, with the n-th level
giving a convex hull representation.

In our attempt we consider a level-1 RLT formulation, applying the following
two steps:
Reformulation: multiply each of the inequalities by each binary variable ystij and
its complement (1− ystij ). Substitute (ystij )2 = ystij throughout the constraints.
Linearization: linearize the resulting constraints by substituting, for every dis-
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tinct nonlinear term, a continuous variable, and adding the appropriate lineariza-
tion constraints.

Let us consider first Constraints (3.14), that we multiply by the variable yodbe
and its complement 1− yodbe for any (o, d) ∈ K, (b, e) ∈ A:

yodbe
∑

(i,j)∈A

ystij ≥ yodbe (s, t), (o, d) ∈ K, (b, e) ∈ A (3.55)

(1− yodbe )
∑

(i,j)∈A

ystij ≥ (1− yodbe ) (s, t), (o, d) ∈ K, (b, e) ∈ A. (3.56)

Let us now consider (3.15) and (3.17). Both can be rewritten in the form:

ystij ≤ �stij

with

�stij :=


∑

(o,d)∈K
fod

ij

cij
for (3.15)

fst
ij−uij+cij

cij
for (3.17).

After multiplying by yodbe and 1− yodbe , we obtain:

yodbe y
st
ij ≤ �stijy

od
be (s, t), (o, d) ∈ K, (b, e) ∈ A (3.57)

(1− yodbe )ystij ≤ �stij(1− yodbe ) (s, t), (o, d) ∈ K, (b, e) ∈ A (3.58)

In order to linearize the resulting formulation, we replace all the terms (ystij )2

with ystij , and define the variables:

yodstbeij := yodbe y
st
ij

which can be linearized as:

yodstbeij ≤ min{yodbe , ystij } (s, t), (o, d) ∈ K, (i, j), (b, e) ∈ A (3.59)
yodstbeij ≥ max{0, yodbe + ystij − 1} (s, t), (o, d) ∈ K, (i, j), (b, e) ∈ A (3.60)

Observe that (3.57) and (3.58) contain bilinear terms also involving the continuous
variables uij and fstij , that have to be linearized in a similar way. The resulting
system of inequalities provides a linear relaxation that is at least as strong as the
original, but it involves a large (though polynomial) number of constraints. Even-
tually, we would like to exploit the RLT reformulation to identify valid inequalities
that are helpful in tightening the formulation, and could possibly be separated
in a cutting plane fashion. However, preliminary experiments were not promis-
ing, in the sense that even adding all level-1 RLT inequalities does not appear to
strengthen the formulation noticeably, which, for the moment, discouraged us from
further investigation in this direction.
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3.5 Branch-and-price
Let us consider a formulation including variables representing all the elementary
paths connecting the origin-destination pairs in the graph, instead of the arc vari-
ables x. This allows us to impose the elementarity of the paths implicitly. Since
the number of elementary paths in a graph connecting two nodes (s, t) may be
exponential in the size of the graph, we describe a column generation algorithm to
generate the path variables dynamically.

3.5.1 Path formulation
Let P st be the set of all the elementary paths connecting the origin-destination
pair (s, t) ∈ K. Let the parameter σpstij be 1 if the path p ∈ P st contains the arc
(i, j) and 0 otherwise. Let the binary variable λstp be 1 if the path of index p is
selected for the pair (s, t) and 0 otherwise. For each pair (s, t) ∈ K, let φst ∈ R+ be
the flow allocated to it and let fstij the amount of flow on the arc (i, j) ∈ A. Notice
that fstij is either φst or 0. Let uij be an upper bound on the flows over the arc
(i, j) ∈ A. The binary variables ystij indicate whether an arc (i, j) is a bottleneck
for (s, t). We obtain the following MILP path-based formulation for UFP-MMF:

max
∑

(s,t)∈K

φst (3.61)

s.t.
∑

(i,j)∈δ+(i)

fstij −
∑

(j,i)∈δ−(i)

fstji =


φst if i = s

−φst if i = t

0 else
i ∈ V, (s, t) ∈ K (3.62)

∑
(s,t)∈K

fstij ≤ cij (i, j) ∈ A (3.63)

∑
p∈Pst

λpst = 1 (s, t) ∈ K (3.64)

fstij ≤ cij
∑
p∈Pst

(σpstij λ
p
st) (i, j) ∈ A, (s, t) ∈ K (3.65)

∑
(i,j)∈A

ystij ≥ 1 (s, t) ∈ K (3.66)

∑
(o,d)∈K

fodij ≥ cijystij (i, j) ∈ A, (s, t) ∈ K (3.67)

uij ≥ fstij (i, j) ∈ A, (s, t) ∈ K (3.68)
uij ≤ fstij + cij(1− ystij ) (i, j) ∈ A, (s, t) ∈ K (3.69)
φst, fstij , uij ≥ 0 (i, j) ∈ A, (s, t) ∈ K (3.70)
λpst ∈ {0, 1} (s, t) ∈ K, p ∈ P st (3.71)
ystij ∈ {0, 1} (i, j) ∈ A, (s, t) ∈ K. (3.72)

Constraints (3.62)–(3.63) are standard flow conservation and capacity con-
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straints. Constraints (3.64) guarantee that only one path is chosen for each (s, t) ∈
K, i.e., that the original arc variables xstij are a convex combinations of the variables
λ. Constraints (3.65) ensure that the flow fstij on an arc is 0 if the selected path
p ∈ P st does not contain the arc (i, j) ∈ A. Constraints (3.66)–(3.69) impose that
the flow vector is MMF for the selected paths, according to Proposition 3.2. More
specifically, Constraints (3.66) guarantee that at least an arc is bottleneck for each
(s, t). Constraints (3.67) ensure that arc (i, j) is saturated if it is bottleneck for
some pair (s, t). Constraints (3.68) make sure that uij is equivalent to the largest
flow allocated over arc (i, j). Finally, Constraints (3.69) impose that the flow of a
pair (s, t) through its bottleneck arc (i, j) is as large as the largest flow through
(i, j) for all the other pairs.

3.5.2 Column generation
Formulation (3.61)–(3.72) has an exponential number of variables with respect to
the size of the graph, but has a rather natural interpretation and a few practical
advantages.

One advantage of a path formulation is that it is quite convenient to take into
account restrictions on the structure of the routing paths when the path variables
are generated, even when it is not easy to handle those constraints effectively in
the arc formulation – for instance, the elementarity of the paths. In some cases,
the set of feasible paths Pst for each (s, t) pair might be even entirely given a priori
(e.g., by the network operator itself).

A second reason for choosing a path formulation is related to the the different
solution approach and the additional insight that we gain. The path formulation
can be viewed as a Dantzig-Wolfe decomposition [DW60] of the arc formulation
we described in the previous section. The idea of a Dantzig-Wolfe decomposition
is to reformulate the problem so to convexify a subset of the constraints. To do
so, a set of variables is replaced by a convex combination of the extreme points
of the polytope where they lie (possible due to Minkowski’s theorem). The corre-
sponding constraints, sometimes called structural constraints, are removed by the
formulation. They will be used to generate the extreme points (each correspond-
ing, in our case, to a different elementary s-t paths). What is left, i.e., the linking
constraints (3.61)–(3.72) plus the original objective function, is usually referred to
as the master problem.

The so-called restricted master problem is obtained by restricting each set P st
to a subset P̄ st of paths that have been generated. Then, it is possible to use a
column generation approach, where new paths (equivalently, the λstp variables), are
dynamically generated via a pricing subproblem. The pricing subproblem has the
aim of generating attractive paths considering their reduced cost, and the procedure
stops when no more improving variables can be found. In essence, this can be seen
as a generalization of the simplex method [DL05].

It is necessary to point out that this technique, as described up to now, can
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be used to solve only the LP relaxation of (3.61)–(3.72). The next step, then, is
to combine the Dantzig-Wolfe decomposition with integer programming techniques
aimed at finding integer solution. This means branching on the integer variables,
and, possibly, generating valid cutting planes, while the relaxation in each node
will be solved by column generation. This method is usually referred to as branch-
and-price, or branch-and-price-and-cut. A similar approach has been proposed in
the past for integer or unsplittable multicommodity flows, notably by Barnhart
et al. [BJN+98], and later by Alvelos and Carvalho [AdC03, Alv05]. Note, how-
ever, that they solve a multicommodity flow problem where a total cost is to be
minimized, and the demands are given.

3.5.3 Pricing
Let ωst ∈ R and πstij ≥ 0 be the dual variables associated to, respectively, Con-
straints (3.64) and (3.65). The reduced cost associated with a variable λstp is
0 +

∑
(i,j)∈A σ

pst
ij (πstij cij) − ωst. In order to generate an improving column for a

given (s, t) ∈ K, we need to generate an elementary path p ∈ P st whose associated
λstp variable has a positive reduced cost, i.e., such that∑

(i,j)∈A

σpstij (πstij cij) > ωst.

This amounts to finding, for each (s, t) ∈ K, a longest path p ∈ P st over the
original graph G where the weight of each arc is given by πstij cij ≥ 0. The path
p is described by the vector σpst ∈ {0, 1}|A|, where σpstij = 1 if the arc (i, j) ∈ A
belongs to the path and equals 0 otherwise.

The pricing procedure requires the exact solution of the subproblem. Due to
the possible presence of positive cycles, we must impose the elementarity of the
path explicitly. This is consistent with the observation that subtours may arise in
a solution of the UFP-MMF arc-based formulation, unless prevented.

An alternative that is often used similar problems, where the pricing problem is
a shortest path, but branching constraints may give rise to negative cost cycles, is
to introduce cycle variables — see, e.g., [Alv05]. This is possible when the structure
of the problem guarantees that, in a optimal solution, those cycle variables will be
null (or cycles can be safely removed from the solution). However, this does not
hold true in our case; thus, we actually need to solve a longest elementary path
problem.

The longest elementary path problem is known to be NP-hard. Here, we cast
it as a MILP which is based on the mathematical programming formulation of the
elementary shortest path problem, with additional subtour elimination constraints.
While similar pricing subproblems are often solved with ad-hoc algorithms, e.g., dy-
namic programming-based labeling algorithms, this is impractical in our case, since
the absence of resource constraints make the search space very large. Moreover,
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using a MILP approach allows us to easily incorporate the branching information
in the pricing subproblems.

Let Vs := V \ {s} and Vst := V \ {s, t}, for a given (s, t) ∈ K. Let the variable
σij ∈ {0, 1} be 1 if the path that we are looking for contains arc (i, j) and 0
otherwise. The pricing subproblem can be cast as a MILP as follows:

max
∑

(i,j)∈A

(cijπij)σij (3.73)

s.t.

∑
(i,j)∈δ+(i)

σij −
∑

(j,i)∈δ−(i)

σji =


1 if i = s

−1 if i = t

0 else
i ∈ V (3.74)

∑
(i,j)∈δ+(i)

σij ≤ 1 i ∈ V (3.75)

Subtour elimination constraints (3.76)
σij ∈ {0, 1} (i, j) ∈ A (3.77)

Constraints (3.74) are standard flow balance constraints. Constraints (3.75) limit
the outgoing degree to 1, hence guaranteeing that the flow is unsplittable. As
indicated in (3.76), we also need to prevent subtours. In this regard, we can adopt
the techniques that will be discussed in Chapter 5.

The column generation approach, at each node, requires the pricing subprob-
lem to certify there are no improving columns. This means solving the problem
exactly at least once. However, finding the variable with maximal reduced cost is
not always necessary2, thus, we can use a hierarchy of heuristics that try to find
improving columns (or prove there are none). As an example, a first check consists
of computing the sum of the outgoing arc with maximum weight for each vertex.
Clearly, if it is smaller than ωst, no improving column can exist. As a simple
heuristic to find an improving column, we adopt a greedy longest path heuristic
that selects the largest-cost outgoing arc, starting from s, until t is reached. We
also check if the arc weights do not actually induce positive cycles. If this is the
case, we can use a polynomial-time algorithm; otherwise, one eventually needs to
solve the MILP problem. The pricing phase is summarized in Figure 3.3.

3.5.4 Branching
We have explained how we can use a Dantzig-Wolfe decomposition to obtain a
lower bound of the optimal value of the original problem. If the solution we obtain
with column generation does not satisfy the integrality constraints on the variables

2Indeed, the classic maximum reduced cost pivoting rule by Dantzig [Dan98] is often replaced,
in modern simplex implementations, in favor of variants of the steepest-edge rule [FG92].
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Figure 3.3: Scheme of the pricing phase in the column generation algorithm.

ystij and λpst, it is necessary to use a branch-and-bound scheme to reach an exact
integer solution, in what is known as branch-and-price [BJN+98].

In particular, one needs to pay special attention when the branching involves the
path selection. A possibility is branching on the variables in the master problem,
i.e., the variables λpst themselves, so that

λpst ≤ bλ̄
p
stc = 0

and:

λpst ≥ dλ̄
p
ste = 1,

where λ̄pst is the current (fractional) value of the path variable. This approach has
some clear drawbacks, although it has been used in some early work on the branch-
and-price. First, it generally yields a poorly balanced branch-and-bound tree, as

48



3.5. Branch-and-price

the branching decision is highly asymmetrical: imposing the selection of a path
is a very strong decision, while imposing a path is not taken is a very weak one.
Second, in the case where a path is forbidden, we must take special care so that
a variable that has been deleted is not generated again in a following node. This
can be hard to do, and it might mean making the pricing subproblem significantly
more difficult to solve.

A different approach arises from the observation that the integrality of the path
variables is not really necessary. Indeed, for an arc variable xstij to be integer, it
suffices that the quantity

∑
p∈P st λstp σ

pst
ij is integer. A natural idea is to branch

on the original arc variables, whose value can be reconstructed using the coupling
equation:

x̄stij =
∑
p∈P st

λ̄stp σ
pst
ij (i, j) ∈ A, (s, t) ∈ K. (3.78)

A valid branching rule consists of selecting an arc (i, j) and a pair (s, t) such that
x̄stij has fractional value. We create two subproblems, namely a node with the
constraint: ∑

p∈P st

λstp σ
pst
ij ≤ bx̄

st
ijc = 0 (3.79)

and one with the constraint: ∑
p∈P st

λstp σ
pst
ij ≥ dx̄

st
ije = 1. (3.80)

A combination of the two approaches is also possible. As an example, Parker
and Ryan [PR93] adopt a branching rule that generates l + 1 children, where l is
the length of the path where we are branching on. The idea is to enforce, on one
branch, λstp = 1, and, on each of the l other branches, xstpi

= 0, where pi is the i-th
arc contained in the path p.

Regarding the bottleneck variables ystij , branching is straightforward. The branch-
ing decisions for variables ystij can be left to the underlying solver, that can apply
its highly-tuned branching rules, such as pseudocost branching, strong branching,
reliability branching (see, e.g., [BGG+71] and [AKM05]).

A further option is to impose a different branching priority among the variables.
In other words, branching decisions are imposed first only on one family of variables,
until all of them have integer values. For UFP-MMF, one can branch first on the
bottleneck variables y, and then on the arc variables x.

Note that, in a branch-and-price approach, the branching decision can be im-
posed in two different ways. One way is to add the branching constraints to the
master problem, i.e., adding them to the linking constraints. This gives rise to ad-
ditional dual variables that we have to keep into account in the pricing subproblem.
In particular, the coefficients of the objective function will be augmented with the
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optimal dual values corresponding to the branching constraints. This approach has
the advantage of leaving the structure of the pricing subproblem intact, except for
the objective coefficients.

An alternative is to enforce the branching decisions in the pricing subproblems.
The master problem is not augmented with additional constraints that might make
it computationally heavier, and we do not need to consider other dual values.
However, this means potentially modifying the structure of the subproblems. In
some cases, imposing a branching decision is easy: think, for example, of the
case where the pricing phase consists of solving knapsack problems. Then, both
branching decisions (imposing an item is or is not selected) can be enforced easily.
Viceversa, if the pricing phase involved a standard shortest path, imposing an arc
is not in the path is trivial, while forcing its inclusion is not. This argument does
not apply if the pricing subproblems are solved as generic MILPs: in this case,
changing the lower and upper bounds of a variable is straightforward, and the
resulting problem is, typically, not harder.

3.6 Heuristics

In preliminary experiments, we observed that finding feasible solutions for UFP-
MMF with variants of a branch-and-bound algorithm is very hard, even for state-of-
the-art MILP solvers such as CPLEX. The introduction of ad hoc primal heuristics
is indeed crucial for the effectiveness of algorithms based on a branch-and-bound
scheme. However, for the most challenging instances, standalone heuristics are
sometimes the only option to find good feasible solutions within a reasonable time
limit. In this section, we describe: simple rounding heuristics to be used within
the branch-and-bound tree; a restricted path formulation, that can be used as a
standalone heuristic or within the branch-and-price; a randomized greedy heuristic;
and finally, a local search algorithm with variable neighborhood and tabu list.

3.6.1 Rounding heuristics

Shortest-path rounding

Starting from a feasible solution of the continuous relaxation, for each (s, t) we
find a shortest path in G with weights 1 − xstij for each arc (i, j) ∈ A. A variant
is obtained by sampling the weight of each arc from a uniform distribution in
(0, 1 − xstij). In a branch-and-price algorithm, an interesting side product of this
kind of heuristic is that, if the path that is found is not already in P̄ st, the new
column can be added to the pool.
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Path-based rounding

This kind of heuristic can be used only within a branch-and-price. Starting from
a feasible solution of the continuous relaxation, for each (s, t) we select the path
p ∈ P̄ st with the largest λstp . In an alternative, randomized variant, we pick a path
p ∈ P̄ st with a probability equal to λstp .

For both rounding heuristics, once a path pst has been selected for each (s, t)
pair, a complete feasible solution is constructed by running the water filling algo-
rithm over the chosen paths.

3.6.2 Restricted path formulation

Let us consider a restriction of the path formulation, where for each (s, t), only a
subset of the feasible elementary paths in the graph can be selected. Its optimal
value is a lower bound with respect to the optimal value of the original problem,
and the solutions will be feasible also for UFP-MMF.

If we are interested in using the restricted MILP as a standalone heuristic, the
choice of the paths can be made according to a criterion that generates a set of
attractive (and diverse) paths a priori.

An alternative option is to start the branch-and-price algorithm and stop the
pricing at a certain depth of the search tree (bounded depth), or after a certain
number of paths has been reached (bounded cardinality), and continue the branch-
and-bound search until conclusion.

It is also possible to use this kind of heuristic within an exact branch-and-price:
we can build and solve a restricted path subproblem, where we include only the
columns generated so far, and impose the integrality of the λstp variables. However,
it must be noted that solving this MILP to optimality, even with a restricted set of
variables, is challenging. In order to use this powerful but rather heavy heuristic,
it is essential to adopt a short time limit and to run it with a low frequency.

3.6.3 Greedy multistart heuristic

Greedy algorithm

A deterministic greedy algorithm can be devised by considering K as an ordered
list of (s, t) pairs. Then, in sequence, each of the flows is routed over the graph
finding a path according to a given criterion. The water-filling algorithm is run at
each iteration for all the paths selected so far, so as to provide a flow allocation
which approximates the final MMF allocation with increasing accuracy and that
can be used in the selection criterion.
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Algorithm 3.1: Greedy algorithm.
Data: G = (V,A),K

1 P̄ ← ∅;
2 for (i, j) ∈ A do
3 wij ←

1
cij

;

4 end
5 for (s, t) ∈ K do
6 pst ← shortest_path(G, s, t, w);
7 P̄ ← P̄ ∪ pst;
8 φ← water-filling(G, P̄ );
9 for (i, j) ∈ A do

10 update(wij);
11 end
12 end

The general scheme can be modified with respect to the order in which the OD
pairs are considered, and what criterion is used to select the routing path for a given
OD pair. Regarding the a priori order in which the commodities are considered,
we have observed no criterion that consistently performs better, on average, than
a random order. Then, we can exploit this idea to randomize the algorithm, as will
be seen in the next subsection.

For a given (s, t), in order to select a routing path we find a shortest path
over the graph G where each arc has a weight that is inversely proportional to
its attractiveness. We have experimented with the following cost functions in the
update step (line 10):

wij ←
1

cij − γ
∑

(s,t)∈U(i,j)

φst + ε
wij ←

1 + |U(i, j)|
cij −

∑
(s,t)∈U(i,j)

φst + ε

where φst is the MMF flow allocation computed over the partial solution built so
far, U(i, j) represents the subset of paths using the arc (i, j), and γ is a value in the
interval (0, 1]. The first cost function penalizes congested arcs, considering their
residual capacity c̃ij = cij −

∑
(s,t)∈U(i,j)

φst with a weight γ multiplying the value

of the flows using that arc. Randomization can be introduced by considering the
value γ to be sampled from a random distribution for each arc (i, j). The second
cost function is an attempt to further penalize overlapping paths. while the third
one introduces some randomization. The term ε is a small positive number (e.g.,
0.001) in order to avoid division by 0 when the capacity of the arc is saturated.

An alternative approach to select the paths entails using the widest-path algo-
rithm over the residual graph, instead of the shortest-path with the arc costs wij ,
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that is, replacing line 6 with:

pst ← widest_path(G, s, t, c̃).

This approach is quite effective in finding good paths when few OD pairs have
been routed in the graph. However, the results are quite poor when the number of
routed pairs grows, and the residual graph has many arcs with capacity equal to 0.
Then, a good practical approach is to use a hybrid variant of Algorithm 3.1 where
the widest-path algorithm is used as long as we find a widest path of nonzero value,
and then the shortest-path update is adopted for the following iterations.

Multistart algorithm

Given an order of the OD pairs, the greedy algorithm is deterministic. It can be
easily randomized considering sequences with a different ordering of the origin-
destination pairs to be routed.

In the following simple multistart heuristic, the integer MaxIt represents the
number of restarts. At each iteration, the sequence of OD pairs is shuffled randomly,
and Algorithm 3.1 is run; after MaxIt attempts, the heuristic returns the best
solution found. Let us denote by τ(sol) the objective value of the solution sol.

Algorithm 3.2: Multistart algorithm with randomized order of selection.
Data: G = (V,A),K,MaxIt
best_sol← null;
for t = 1, . . . ,MaxIt do

K ← shuffle(K);
sol← greedy(G,K);
if τ(sol) > τ(best_sol) then

best_sol← sol;
end

end
return best_sol;

Refining a good solution

The multistart approach does not exploit previous good solutions to build better
ones. We can randomize only partially, introducing the parameters:
• Nreuse: number of times a good solution is exploited;
• Reuse_percentage: percentage of the paths that are maintained.

When the current solution is better than the best found so far, we begin an inten-
sification phase, where the next Nreuse restarts are close to that solution. To do
so, we fix the first Reuse_percentage of the paths in the best solution, and we
complete the solution with the randomized greedy approach.
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Algorithm 3.3: Multistart algorithm with intensification phase.
Data: G = (V,A),K,MaxIt
best_sol← null;
reuse← 0;
for t = 1, . . . ,MaxIt do

if reuse > 0 then
K ← partial_shuffle(K,Reuse_percentage);

else
K ← shuffle(K);

end
sol← greedy(G,K);
if τ(sol) > τ(best_sol) then

best_sol← sol;
reuse← Nreuse;

else
if reuse > 0 then

reuse← reuse− 1;
end

end
end
return best_sol;

The function partial_shuffle only randomizes the last 1−Reuse_percentage
elements, while the first Reuse_percentage of them are fixed. If after Nreuse
times a new best solution has not been found, the variable reuse will reach 0 and a
new solution will be built from scratch (complete restart), shuffling the whole list
K, to guarantee diversification.

3.6.4 Local search with variable neighborhood and tabu list
The multistart algorithm described in the previous paragraphs quickly generates
reasonably good solutions, as we will show in the computational experiments. A
way to improve upon those solutions is to explore their neighborhoods moving
towards a local optimum.

There are several ways to define a neighborhood of a UFP-MMF solution. The
most natural approach consists in considering a solution as a collection of s-t paths,
one for each OD pair3. Let us define the neighborhood Nm(sol) of a solution as all
the UFP-MMF feasible solutions where at most m paths differ from those of sol.
Then, the cardinality of Nm(sol) is O

(∑m
i=1 P̂

i
(
k
i

))
, where k := |K| and P̂ is an

upper bound on the number of distinct routing paths for any OD pair. It is clear
that evenN1(sol) can be very large: there are k subsets ofK with cardinality 1, and
for each of them there are a number of alternative paths which is exponential with

3Note that a UFP-MMF solution is univocally determined by the selected routing paths, since
the corresponding MMF flow allocation is unique.
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the size of the arc-set. Clearly we can explore only a subset of a neighborhood. We
would like to consider, instead of all possible paths for each (s, t) ∈ K, just a subset
of attractive paths, selected based on an appropriate criterion: the question is how
to choose alternative paths that would improve the solution. We could use a MIP
formulation to find the paths that give the largest improvement in the objective
function. However, preliminary experiments have showed that this is not a viable
approach, since even redirecting 2 paths is far too computationally demanding to
be done iteratively.

An alternative is to adopt a criterion which attempts to approximate such a
locally optimal move. It appears essential that the selection of the new routing
paths is done as efficiently as possible, even if we are sacrificing the quality of
the move4. Given a subset K̂ ⊂ K of OD pairs, with |K̂| = m, we generate an
alternative path for each pair (s, t) ∈ K̂ solving a shortest-path problem where the
weights of the arcs are determined so as to promote i) diversity with respect to the
current path, and ii) a potential improvement in the objective function. It is easy
to obtain i), while obtaining ii) is not trivial. A criterion that appears to work
well in producing good paths is the one that we adopted in the greedy approach
of Algorithm 3.1, i.e., using the inverse of the residual capacity on each arc, with
a randomization factor.

In Algorithm 3.4 we report a high-level description of our local search method,
where we move between neighboring solutions as long as we are able to improve
the objective function, in the spirit of hill climbing techniques. The algorithm
first looks for improving solutions by sampling the neighborhood Nm(sol). The
function SP_Neigh(sol,m, s) samples randomly a subset of size s from the neigh-
borhood Nm(sol), selecting the alternative paths according to the above-mentioned
shortest-path criterion. If no improving solution is found, we consider larger neigh-
borhoods, increasing the parameter m with a unitary step-size. We also simul-
taneously increase the number s of solutions sampled from the neighborhood, in
an attempt to explore more thoroughly this larger neighborhood. The function
increment(s,m) is responsible for increasing the size of the current neighborhood
when no improving solution is found. We also adopt some tabu search features:
when we have reached the maximum allowed size of the neighborhood, we accept
also non-improving moves, and consider the best solution among those we have
explored in the current neighborhood. To avoid cycling to the previous solutions,
we keep a tabu list where we store the last 2 moves. A move is simply encoded
as the list of (s, t) pairs whose path had been modified. Such short tabu list is
sufficient, since longer cycles appear to be very unlikely in practice. The number of
non-improving moves in a search is bounded by the parameter MaxNonimprov.

4Note, however, that a move which does not give the (locally) largest improvement is not
necessarily worse in the context of a local search.
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Algorithm 3.4: Local search with variable neighborhood and tabu list.
Data: G = (V,A),K, initSol, s0,m0, s,m
curSol, s,m← initSol, s0,m0;
while continue do

continue← false;
localBest← null;
foreach sol ∈ SP_Neigh(curSol,m, s) do

if τ(sol) > τ(curSol) then
curSol← sol;
tabu.push(curSol);
continue← true;
break;

end
if sol /∈ tabu and τ(sol) > τ(localBest) then

localBest← sol;
end

end
if continue = false then

if m < m then
increment(m, s);
continue← true;

else if i<MaxNonimprov then
curSol← localBest;
tabu.push(curSol);
i← i+ 1;
continue← true;

end
end

end
return curSol;

Finally, to provides further diversification, the local search algorithm is embed-
ded in the multistart scheme of Algorithm 3.2. At each restart, we first find a
first solution via the greedy heuristic, then we use the local search with variable
neighborhood and tabu list to reach a locally optimal solution.
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CHAPTER4
Relaxations and variants

Within an exact MIP-based method, or simply when evaluating a feasible solution
for UFP-MMF, it is crucial to obtain valid upper bounds that give a guarantee
on its quality. This can be done solving a relaxation of the original problem. The
solutions obtained from a relaxation can also be used to build feasible UFP-MMF
solutions heuristically.

A standard relaxation of a mixed-integer programming problem is the linear
programming one, where the integrality requirement is dropped. UFP-MMF has a
number of natural relaxations that are obtained by relaxing the max-min fairness
criterion. These relaxations have various degrees of difficulty and effectiveness in
providing good bounds and feasible solutions. In Sections 4.1–4.3 we describe three
of them. In Section 4.4 we also discuss two alternative definitions of fairness which
do not give a relaxation of UFP-MMF, but are of interest on their own.

4.1 Maximum-throughput unsplittable flow prob-
lem (UFP)

An obvious relaxation of UFP-MMF is obtained by discarding the max-min fair-
ness constraints, and considering the single-level problem where the leader has
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control of both paths and flow allocation to maximize the total throughput. This
is a maximum unsplittable multicommodity flow problem (UFP), which is NP-
hard but relatively easier than UFP-MMF, not only because of the lack of fairness
constraints, but also because there is no need to explicitly prevent subtours (that
cannot arise in optimal solutions). The UFP solution is typically not feasible for
UFP-MMF. However, from an UFP optimal solution, a UFP-MMF feasible solution
can be obtained recomputing the flow allocations over the selected paths according
to the max-min fairness criterion.

4.2 Unsplittable flows subject to max-bottleneck
fairness (UFP-MB)

Instead of MMF, suppose that at the second level of our problem the flows are
allocated so that only the value of the smallest allocated flow is maximized. This
is equivalent to relaxing the MMF constraints to consider only the first element of
the sorted vector of allocation. In other words, we maximize the smallest allocation
on the first bottleneck arc found by the water filling over the paths chosen by the
leader. We denote this criterion by Max-Bottleneck fairness (MB).

Since, for any path selection, the set of feasible flow vectors for MMF is a subset
of the ones which are feasible for MB, and the overall objective function is the same,
UFP-MB is a relaxation of UFP-MMF and, hence, the optimal objective function
value of the former is an upper bound on that of the latter.

The follower problem of maximizing the smallest flow allocation is essentially a
variant of the max-concurrent flow problem. Over fixed paths, it is easy to verify
that the maximum smallest flow allocation can be obtained applying the first step
of the water-filling algorithm. Note that, once the smallest allocation is maximized,
the remaining allocations are free, and we assume an optimistic setting, where they
will be allocated in a max-throughput fashion.

The following simple example shows that, in general, the optimal solution val-
ues of the unconstrained throughput maximization problem (UFP), that of UFP-
MMF, and that of UFP-MB differ.

Example 4.1. Consider the same graph used in Example 2.2 and 2.3, that we
report in Figure 4.1 for convenience.

We have discusses in Example 2.2 that the bilevel UFP-MMF optimal vector is
φ = (1, 3, 3, 1, 1, ε), with a total throughput of τ = 9 + ε, obtained routing (s6, t6)
over the arc (a, e), and (s1, t1) through d. We have also seen already that the
optimal value of UFP can be obtained by allocating a flow φ1 = 0 to the pair
(s1, t1), and by routing a flow φ6 = ε over the arc (a, e), with the resulting flow
allocation vector φ = (0, 3, 3, 2, 2, ε) and a total throughput τ = 10 + ε.

If the flow allocation is subject to Max-Bottleneck fairness, once the smallest
allocation has been maximized and allocated to all the origin-destination pairs,

58



4.2. Unsplittable flows subject to max-bottleneck fairness (UFP-MB)

the problem on the residual graph becomes a standard maximum unsplittable flow
problem with no fairness constraints. It is easy to check that the maximum through-
put under MB is obtained routing again φ6 over the arc (a, e), with value ε, and
guaranteeing a flow value of at least ε to all other pairs. Let us consider the OD
pair (s1, t1). Since both paths where the flow φ1 can be routed contain arcs which
are used by other pairs, no more than ε should be allocated to it. If φ1 is routed
over the path through node d, the resulting allocation is φ = (ε, 3, 3, 2− ε, 2− ε, ε),
with τ = 10. If that through node c is used, we obtain φ = (ε, 3− ε, 3− ε, 2, 2, ε),
with the same τ = 10.

a b

c

d e

3
210

3
2

ε

(s1 = b, t1 = e)
(s2 = b, t2 = c)
(s3 = c, t3 = e)
(s4 = b, t4 = d)
(s5 = d, t5 = e)
(s6 = a, t6 = e)

Figure 4.1: Graph with six origin-destination pairs used in Example 4.1.

We now derive a characterization of the optimal solution for the Max-Bottleneck
version, similar to that of Proposition 3.2.

Proposition 4.2. Given a directed graph G = (V,A), a set K of origin-destination
pairs and a simple path for each (s, t) ∈ K, a feasible flow allocation vector φ is
optimal for the problem of maximizing the minimum flow allocated to any pair if
and only if there is at least an arc (i, j) ∈ A (referred to as global bottleneck),
satisfying the following properties:

1. the arc capacity is saturated,

2. the arc capacity is equally divided among all the origin-destination pairs that
share the arc,

3. the flow allocated to the pairs that share the arc is the smallest among the
flow values allocated to the pairs in K.

Proof. Suppose that arc (i, j) is a global bottleneck and let η := mini=1,...,k{φi}.
Due to 3), all the flows sharing the global bottleneck have a value of η. Since, due
to 1) and also to 2), the capacity cij is equally divided among the pairs, it is not
possible to improve one of the allocations of value η without decreasing another
one (thus, decreasing η). Since η is independent of the flow value for pairs not
using (i, j), it follows that the solution is optimal.

Conversely, suppose that φ is optimal. Consider again the smallest flow alloca-
tion η in φ. Assume that there is no global bottleneck. Then, for all (s, t) pairs
with flow value η, either all the arcs in their path are nonsaturated, or the capacity
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is not equally shared. In both cases, the flow can be increased (in the latter case,
by decreasing a larger flow).

To obtain a formulation for UFP-MB, it suffices to remove the ystij variables while
introducing the binary variables bij , each of which equals 1 if the corresponding
arc (i, j) is a global bottleneck. Then, we can replace the MMF constraints (3.14)–
(3.17) and the variables ystij with the following ones:

∑
(i,j)∈A

bij ≥ 1 (4.1)

∑
(s,t)∈K

fstij ≥ cijbij (i, j) ∈ A (4.2)

η ≤ φst (s, t) ∈ K (4.3)
η ≥ fstij − cij(2− bij − xstij) (i, j) ∈ A, (s, t) ∈ K (4.4)
η ≥ 0, bij ∈ {0, 1} (i, j) ∈ A. (4.5)

Constraint (4.1) ensures that there is at least one global bottleneck. Constraints (4.2)
impose that the global bottleneck arc is saturated. Constraints (4.3)–(4.4) make
sure that all pairs sharing the global bottleneck assume the smallest allocation.

An additional valid inequality for UFP-MB, which we will adopt to tighten the
formulation in the computational experiments, is:

bij ≤
∑

(s,t)∈K

xstij . (4.6)

Note that subtours must be prevented also for UFP-MB, and we can adopt the
same branch-and-cut algorithm we have devised for UFP-MMF. In particular, we
generate the GCS inequalities to eliminate subtours and strengthen the formula-
tion. The majority of the valid bounds and inequalities for UFP-MMF can also
be adapted easily to UFP-MB. The rounding heuristics can be adapted as follows.
Once a path has been selected for each (s, t) pair, a simple 2-stage algorithm has
to be applied: it consists of solving a bottleneck-maximization problem over fixed
paths (carrying out the first step of the water-filling algorithm) followed by an LP
that maximizes the total throughput over the residual graph.

4.2.1 Dual-based alternative formulation

An alternative to Constraints (4.1)–(4.4) can be obtained by considering an LP
formulation for the problem of maximizing the smallest flow allocation, in the spirit
of the max-concurrent flow problem. When a path pst is given for all (s, t) ∈ K,
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the lower level problem can be written as the following LP:

max η (4.7)
s.t. η ≤ φst ∀(s, t) ∈ K (4.8)∑

(s,t)∈K:(i,j)∈pst

φst ≤ cij ∀(i, j) ∈ A (4.9)

φst ≥ 0 ∀(s, t) ∈ K (4.10)
η ≥ 0. (4.11)

Its LP dual reads:

min
∑

(i,j)∈A

cijβij (4.12)

s.t.
∑

(s,t)∈K

αst ≥ 1 (4.13)

∑
(i,j)∈pst

βij ≥ αst ∀(s, t) ∈ K (4.14)

αst ≥ 0 ∀(s, t) ∈ K (4.15)
βij ≥ 0 ∀(i, j) ∈ A. (4.16)

Proposition 4.3. The original constraints

η ≤ φst ∀(s, t) ∈ K (4.17)

which link first and second level problems can be replaced with∑
(i,j)∈A

cijβij ≤ φst ∀(s, t) ∈ K (4.18)

subject to (4.13)–(4.16).

Proof. By weak LP duality, any solution to (4.13)–(4.16) yields an upper bound of∑
ij∈A cijβij to any feasible solution to (4.8)–(4.11). Hence, in any feasible solution

Constraint (4.18) is at least as tight as Constraint (4.17).

When the paths are not given, Constraint (4.14) reads:∑
(i,j)∈A

xstijβij ≥ αst ∀(s, t) ∈ K (4.19)

We introduce a new variable γstij := xstijβij . Due to the direction of the con-
straint, of the four constraints arising from the (exact) linearization à la Mc-
Cormick of the bilinear product between a continuous and a binary variable,
only two are needed, namely γstij ≤ xstij β̄ij and γstij ≤ βij , where β̄ij is an up-
per bound on βij . We derive one as follows. Due to strong duality, we can assume
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∑
(i,j)∈A cijβij = η ≤ φst ≤ φ̄st for all (s, t) ∈ K, from which we have: cijβij ≤ φ̄st

for all (s, t) ∈ K, where φ̄st is an upper bound on φst. Then we obtain:

β̄ij :=
min(s,t)∈K{φ̄st}

cij
.

Then, the max-bottleneck fairness can be imposed adding to the UFP formulation
the following set of linear inequalities:∑

ij∈A
cijβij ≤ φst ∀(s, t) ∈ K (4.20)

∑
(s,t)∈K

αst ≥ 1 (4.21)

∑
(i,j)∈A

γstij ≥ αst ∀(s, t) ∈ K (4.22)

γstij ≤ β̄ijxstij ∀(s, t) ∈ K, (i, j) ∈ A (4.23)
γstij ≤ βij ∀(s, t) ∈ K, (i, j) ∈ A (4.24)
αst ≥ 0 ∀(s, t) ∈ K (4.25)
βij ≥ 0 ∀(i, j) ∈ A, (4.26)

which are also valid inequalities for UFP-MMF.

4.3 Relaxed max-min fairness (r-MMF)
It is also possible to relax the Max-Min Fairness constraint in a different way.
Instead of limiting the depth of the lexicographical optimization to the first element,
as in MB, we can borrow an idea from [KRT99] and relax the bottleneck constraint
by a factor r ∈ (0, 1]. Then, in an r-bottleneck, a flow fstij must be at least a factor
r of the maximum flow (uij) allocated on the arc (i, j). In other words, this means
imposing a softer notion of fairness, which tolerates “injustice” up to a factor r.
To assume r-MMF, it is sufficient to replace the bottleneck Constraint (3.17) with
the following inequality:

fstij ≥ ruij + cij(ystij − 1) (i, j) ∈ A, (s, t) ∈ K, (4.27)

where the relaxed equilibrium imposes that an allocation is r-MMF if it is not
possible to increase the allocation of (s, t) unless we decrease the flow of an OD
pair which is worse off by a factor r.

4.4 Alternative definitions of fairness
Let us consider UFP-MMF as a variant of a more general bilevel unsplittable
flow problem subject to fair flow allocation (UFP-fair). Massoulié et al. showed
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in [MR02] that different congestion avoidance mechanisms in IP networks may pro-
duce different types of fairness. Then, it is possible to modify the lower level of the
bilevel formulation to account for different fairness criteria that are implemented
by the network protocols. Note that, in the two variants we will describe, the
resulting problems are not a relaxation of UFP-MMF. Moreover, they give rise to
mixed-integer nonlinear problems. We do not include experimental results in this
thesis, although research on these variants is already underway.

Unsplittable flows subject to proportional fairness (UFP-PF)

A widely studied of fairness is proportional fairness [KMT98], that is known to well
approximate FIFO fair queuing policies [MR02].

Definition 4.4. (Proportional Fairness). A flow allocation φ is proportionally fair
if and only if, for any other feasible allocation φ′, we have:

∑
(s,t)∈K

φ′st − φst
φst

≤ 0

In other words, any change in the allocation must have a negative average
relative change. If the set of feasible allocation vectors is convex, the proportionally
fair allocation is unique and the following proposition is easily verified.

Proposition 4.5. The proportionally fair allocation is the one maximizing the
utility function

J(φ) =
∑

(s,t)∈K

ln(φst)

over the set of feasible flow allocations.

Then, one can build the bilevel problem of finding the maximum throughput
unsplittable flows subject to proportional fairness (UFP-PF) replacing the lower-
level MMF problem with the maximization of the sum of the logarithms:

φ ∈ argmax

 ∑
(s,t)∈K

ln(φst)

 . (4.28)

The lower-level problem depends on the path selection of the upper level. It will
be:

max
∑

(s,t)∈K

ln(φst) (4.29)

s.t.
∑

(s,t)∈K:(i,j)∈pst

φst ≤ cij ∀(i, j) ∈ A (4.30)

φst ≥ 0 ∀(s, t) ∈ K, (4.31)
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where pst is the routing path for pair (s, t). Let πij ≥ 0 be the dual variables
corresponding to Constraints (4.30). Then, the KKT conditions read:

 ∑
(s,t)∈K:(i,j)∈pst

φst − cij

πij = 0 ∀(i, j) ∈ A (4.32)

∑
(s,t)∈K:(i,j)∈pst

φst ≤ cij ∀(i, j) ∈ A (4.33)

1
φst

=
∑

(i,j)∈pst

πij ∀(s, t) ∈ K (4.34)

πij ≥ 0 ∀(i, j) ∈ A. (4.35)

The primal feasibility condition (4.33) is already implied by the constraints in the
upper-level problem. Equations (4.32) and (4.34), when the paths are not fixed,
become:  ∑

(s,t)∈K

φstx
st
ij − cij

πij = 0 ∀(i, j) ∈ A (4.36)

1
φst

=
∑

(i,j)∈A

πijx
st
ij ∀(s, t) ∈ K, (4.37)

Equation (4.36) can be rewritten as
(∑

(s,t)∈K f
st
ij − cij

)
πij = 0, where fstij is the

variable defined in the upper level as the s-t flow through the arc (i, j), and can
be linearized introducing a binary variable that is 0 if πij = 0, and 1 otherwise.
On the other hand, Equation (4.37) cannot be linearized in an exact way, since it
is non homogeneous and it involves a product of continuous variables, so that the
problem can be solved as a (nonconvex) mixed-integer nonlinear program with a
spatial branch-and-bound [BLL+09]. An alternative is to solve an approximation,
either linearizing the KKT conditions or linearizing the objective function (4.29)
and, then, using strong duality to impose its optimality conditions.

Unsplittable flows subject to minimum potential-delay fairness (UFP-
MDPF)

Another definition of fairness cited in [MR02] is the minimum potential-delay fair-
ness, where the fair solution is defined as the one maximizing the utility function:

J(φ) =
∑

(s,t)∈K

(
− 1
φst

)
.
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Similarly to the case of proportional fairness, the KKT conditions can be derived,
yielding the following equations, when the paths are not given: ∑

(s,t)∈K

fstij − cij

πij = 0 ∀(i, j) ∈ A (4.38)

1
φ2
st

=
∑

(i,j)∈A

πijx
st
ij ∀(s, t) ∈ K, (4.39)

that give rise, even in this case, to a mixed-integer nonlinear program.
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CHAPTER5
Subtour elimination in elementary-path

problems

In this chapter, we describe and analyze integer programming approaches for
elementary-path problems. In particular, we focus on the elementary longest path
problem (ELPP), that comes up in the pricing phase of the branch-and-price algo-
rithm for UFP-MMF. Moreover, the same approaches can also be applied directly
to the arc formulation of UFP-MMF and its relaxations to impose elementarity of
the origin-destination paths.

Several mixed-integer formulations for the ELPP are described in detail in Sec-
tion 5.2. In Section 5.3 we provide some analytical results, including a proof of
equivalence between the polyhedra described by the two strongest formulations.
Section 5.4 reports computational experiments where we compare the LP relax-
ation bounds and branch-and-cut results. Most of the results described in this
chapter can be found in [Tac14].

5.1 Related work
The problem of finding an elementary longest path (ELPP) when the costs cij
induce positive cycles on G, is clearly NP-hard due to a simple reduction from
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the Hamiltonian path problem. The authors in [BHK03] prove that the LPP is
hard to approximate on directed graphs within a n1−ε for any ε, unless P = NP.
Approximation algorithms have been proposed, e.g., in [AYZ95] and [Scu03].

The ELPP is equivalent to the elementary shortest path problem (ESPP), which
is its minimization counterpart, where the costs induce negative cycles. Often, the
pricing phase in Vehicle Routing Problems (VRP) involve resource-constrained
variants of the elementary shortest path problem (ESPPRC). These problems are
usually solved with fast dynamic programming-based labeling algorithms, e.g., see
[RS06, FDGG04, BDD06]. It is possible to adapt this kind of approach to the
unconstrained ELPP by considering an artificial resource for each node, and im-
posing that less that one unit of each resource is used, as already proposed in
[BC89]. However, this is a very weak constraint, so that the typical approaches for
the ESPPRC do not seem to carry over effectively to the ELPP [DI14]. Even when
resource constraints are present, labeling algorithms are sometimes not applica-
ble or inefficient, and in those cases branch-and-cut algorithms might be a better
choice [JPS08].

5.2 Integer programming formulations

Let us denote with δ+(S) and δ−(S) the arcs leaving/entering the set S ⊆ V ,
and with A(S) the set of arcs with both ends in S ⊆ V . Let us also define
Vi := V \ {i}, and x(S) :=

∑
i∈S xi. In all the formulations, it is assumed w.l.o.g.

that |δ−(s)| = |δ+(t)| = 0. A standard arc formulation to determine the longest
path from node s to node t is the following:

max
∑

(i,j)∈A

cijxij (5.1)

∑
(i,j)∈δ+(i)

xij −
∑

(j,i)∈δ−(i)

xji =


1 if i = s

−1 if i = t

0 else
i ∈ V (5.2)

∑
(i,j)∈δ+(i)

xij ≤ 1 i ∈ V (5.3)

xij ∈ {0, 1} (i, j) ∈ A, (5.4)

where cij ∈ R are the arc costs, and xij are binary arc variables that take value 1 if
the arc (i, j) belongs to the optimal path. Constraints (5.2) are balance equations
imposing there is a path connecting s and t, while Constraints (5.3) ensure that
the outgoing degree of each node is at most one. When the costs cij induce positive
cycles on G, i.e., there is a subtour such that the total cost of its arcs is positive, this
system of inequalities is not sufficient to guarantee the elementarity of the path.
Thus, additional constraints (and, possibly, variables) are necessary to prevent
subtours ensuring that no node is visited more than once.
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Notice that the crucial difference with respect to problems where the path has
to be Hamiltonian is the absence, in the ELPP, of the degree constraints:∑

(i,j)∈δ+(i)

xij =
∑

(j,i)∈δ−(i)

xji = 1 i ∈ V.

We now describe different set of constraints and variables that can be added to
the Formulation (5.1)–(5.4) so as to obtain a valid integer programming formulation
for the ELPP.

Dantzig-Fulkerson-Johnson (DFJ)

For the TSP, success has been achieved with strong formulations with exponentially
many constraints. It is possible to write a formulation for the ELPP based on
the classical Dantzig-Fulkerson-Johnson subtour elimination constraints [DFJ54],
adding to the basic formulation (5.1)–(5.4) the following inequalities:∑

(i,j)∈A(S)

xij ≤ |S| − 1 S ⊆ Vst, |S| ≥ 2. (5.5)

In each subset S, subtours are prevented ensuring that the number of arcs in S

which are selected is smaller than the number of nodes in S. This formulation
includes O(m) variables and O(2n) constraints.

Observation For the Asymmetric TSP (ATSP), due to the degree constraints,
the DFJ subtour eliminations constraints can be written in the equivalent form:∑

(i,j)∈δ+(S)

xij ≥ 1 S ⊂ V, |S| ≥ 2. (5.6)

For the ELPP, Constraints (5.6) are valid only for subsets S with s ∈ S and
t /∈ S. Moreover, they are not equivalent to (5.5), and they are not sufficient to
prevent subtours.

Example 5.1. Consider the solution reported in Figure 5.1, assuming it is a com-
plete graph and that only the arcs with xij = 1 are drawn. The solution does
not violate any inequality (5.6) for any set S containing s, since x(δ+(S)) = 1 for
any such S, although it contains a (disconnected) subtour. On the other hand,
notice that the inequality (5.6) is not valid, e.g., for the set S′, not containing s
and containing only nodes that are not part of the s-t path, where x(δ+(S′)) = 0.

Generalized cutset inequalities (GCS)

DFJ Constraints (5.5) can be strengthened for the ELPP, by replacing the constant
right-hand side with a variable expression, as follows:∑

(i,j)∈A(S)

xij ≤
∑

i∈S\{k}

∑
(i,j)∈δ+(i)

xij
∀k ∈ S ⊆ Vst,

|S| ≥ 2. (5.7)
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S S′

s t

Figure 5.1: An example where Constraints (5.6) are not sufficient to prevent
subtours.

These inequalities can be interpreted as imposing that the number of selected arcs
in a subset S is strictly smaller than the number of nodes in S that belong to the
s-t path.

An equivalent version of these inequalities can be obtained considering the cut-
set variant, which is more easily separated. This approach was used for a symmet-
ric version of ESPPRC in [JPS08] and applied to the asymmetric ESPP in [DI14].
Similar subtour elimination constraints have also been used in branch-and-cut al-
gorithms for the VRP [NR02] or variants of the TSP with profits [FGT98, JPSP14].
We refer to them as generalized cutset inequalities (GCS):∑

(i,j)∈δ+(S)

xij ≥
∑

(k,j)∈δ+(k)

xkj k ∈ S ⊆ Vst, |S| ≥ 2. (5.8)

Constraints (5.8) prevent subtours by ensuring that, for each subset S, the number
of selected arcs leaving S is greater or equal to the number of selected arcs outgoing
from any node in S. In an integer solution, this means that the cut induced by
S must contain at least one arc if at least one node in S belongs to the s-t path,
while, if S does not contain any node in the s-t path, the constraint is the trivial
inequality 0 ≥ 0. The number of variables in the formulation is O(m), while the
number of constraints is O(n2n).

Proposition 5.2. Constraints (5.7) and (5.8) are equivalent.

Proof. For all k ∈ S, x(δ+(k)) ≤ x(δ+(S)) = x(δ+(S)) + x(A(S)) − x(A(S)) =∑
i∈S x(δ+(i))− x(A(S)), where the inequality follows from (5.8).

Sequential formulations (MTZ)

To derive an extended formulation à la Miller, Tucker and Zemlin [MTZ60] (here-
after MTZ) it is enough to introduce, for each node, an auxiliary variable that can
be viewed as the order in which the node is visited and a constraint for each arc:

tj ≥ ti + 1 + (n− 1)(xij − 1) (i, j) ∈ A
i 6= s, j 6= t.

(5.9)
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For the ATSP, this formulation is well-known to give poor linear relaxation bounds,
and we include it only for completeness. However, it is very compact, as it requires
only O(m) additional constraints and O(n) auxiliary variables.

Reformulation-linearization based (RLT)

From the following nonlinear version of the MTZ formulation:

tjxij = (ti + 1)xij (i, j) ∈ A (5.10)
tjxsj = xsj (s, j) ∈ δ+(s), (5.11)

the authors in [HMM13] use the Sherali-Adams reformulation-linearization tech-
nique to obtain the following stronger formulation for the ELPP:

αij = βij + xij (i, j) ∈ A (5.12)

xsj +
∑

(i,j)∈δ−(j)
i6=s

αij −
∑

(j,i)∈δ+(j)

βji = 0 (s, j) ∈ δ+(s),
j 6= t

(5.13)

∑
(i,j)∈δ−(j)

αij −
∑

(j,i)∈δ+(j)

βji = 0 (s, j) /∈ δ+(s)
j 6= s, j 6= t

(5.14)

xij ≤ αij
(i, j) ∈ A,
i 6= s, j 6= s

(5.15)

αij ≤ (n− 1)xij (i, j) ∈ A, i 6= s (5.16)

xij ≤ βij
(i, j) ∈ A,
i 6= s, j 6= s

(5.17)

βij ≤ (n− 1)xij (i, j) ∈ A : i 6= s (5.18)
βij ≤ αij (i, j) ∈ A. (5.19)

This extended formulation requires O(m) constraints and O(m) auxiliary variables.

Single-flow formulation (SF)

A formulation which is close in spirit to the single-flow ATSP formulation of [GG78],
can be obtained introducing an auxiliary flow q to be delivered to the nodes be-
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longing to the s-t path:

qij ≤ (n− 1)xij (i, j) ∈ A (5.20)∑
(s,j)∈δ+(s)

qsj =
∑
k∈V

zk (5.21)

∑
(i,k)∈δ−(k)

qik −
∑

(k,j)∈δ+(k)

qkj = zk k ∈ Vs (5.22)

∑
(i,k)∈δ−(k)

xik = zk k ∈ Vs (5.23)

qij ≥ 0 (i, j) ∈ A. (5.24)

Constraints (5.20) impose that the auxiliary flow is positive only over the arcs
where xij = 1. The auxiliary flow leaving from the node s has value equal to the
number of nodes that are reached by the s-t path. Constraints (5.22) ensure that
the balance of the auxiliary flow on each node is equivalent to zk, which, according
to Constraint (5.23), is either 1, if node k is in the s-t path, or 0 otherwise.

Multicommodity-flow formulation (MCF)

An extension of the single-flow formulation is obtained by disaggregating the aux-
iliary flow into n − 1 unitary flows. Subtours are prevented by enforcing, in the
support graph, one unit of a distinct auxiliary flow from s to each node that belongs
to the s-t path.

qkij ≤ xij
k ∈ Vs,

(i, j) ∈ A (5.25)

∑
(i,j)∈δ+(i)

qkij −
∑

(j,i)∈δ−(i)

qkji =


zk if i = s

−zk if i = k

0 else

i ∈ V,
k ∈ Vs

(5.26)

∑
(k,i)∈δ+(k)

xki = zk k ∈ Vst (5.27)

∑
(i,k)∈δ−(k)

xik = zk k ∈ Vs (5.28)

∑
(s,j)∈δ+(s)

xsj = 1 (5.29)

∑
(i,t)∈δ−(t)

xit = 1 (5.30)

qkij ≥ 0, zk ∈ {0, 1}
(i, j) ∈ A,
k ∈ Vs.

(5.31)

The formulation includes O(nm) additional variables and constraints. This ex-
tended formulation is introduced, for the ELPP, in [IMM09], and it is very similar to
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classic multi-commodity flow formulations for the ATSP proposed byWong [Won80]
and Claus [Cla84].

In Table 5.1 we summarize the considered formulations.

Table 5.1: A summary of the considered formulations.

vars cons description
DFJ m 2n Dantzig-Fulkerson-Johnson SECs(5.5)
GCS m n2n generalized cutsets (5.8)
MTZ m n Miller-Tucker-Zemlin (5.9)
RLT m m reformulation-linearization (5.12)–(5.19)
SF m m single-flow (5.20)-(5.24)

MCF nm nm multi-commodity flow (5.25)-(5.30)

5.3 Polyhedral results
Let us describe some analytical results for the considered ELPP formulations.

Proposition 5.3. Formulation MCF is stronger than formulation SF.

Proof. Constraints (5.20)–(5.22) can be obtained by MCF simply aggregating Con-
straints (5.25)–(5.26) over k ∈ Vs, and then substituting

∑
k∈Vs

qkij with qij . The
example in Figure 5.2 shows that the inclusion is strict.

Proposition 5.4. Formulation GCS is stronger than formulation DFJ.

Proof. The result follows by considering GCS as stated in (5.7), whose right-hand
side is obviously smaller or equal to |S| − 1, right-hand side in (5.5), and the
inclusion is strict by the example in Figure 5.2.

s

t

a

b

c

−20 −10

1

1

−10

−10

Figure 5.2: Example proving strict inclusion for Proposition 5.3 and 5.4. With
GCS and MCF, the LP optimal solution is the one with xst = 1 and optimal
value −20. With SF, the optimal solution has value −26, with xst = xca = 1

4 ,
xsa = xcta = 3

4 and xab = xbc = 1. With DFJ, the solution has value −40, with
xst = 1 and a disconnected subtour with xab = xbc = xca = 2

3 .

We will now show that GCS is as tight as formulation MCF. This requires to
calculate the projection of the MCF extended formulation into the space of the x
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variables. We will make use of two strong results presented in [PS91], and follow a
similar approach to the equivalence proofs therein.

Theorem 5.5. The projection of the MCF-polytope onto the x-space is equivalent
to the GCS-polytope.

Proof. Let us rewrite formulation MCF by projecting out the zk variables. Con-
straints (5.34) and (5.35) follow from Constraint (5.28), while Constraints (5.27)
and (5.28). Assume again that the graph G does not contain the arcs δ−(s) and
δ+(t). The compact formulation reads:

qkij ≤ xij
k ∈ Vs,

(i, j) ∈ A (5.32)

∑
(i,j)∈δ+(i)

qkij −
∑

(j,i)∈δ−(i)

qkji = 0 i ∈ Vs, i 6= k,

k ∈ Vs
(5.33)

∑
(s,j)∈δ+(s)

qksj =
∑

(i,k)∈δ−(k)

xik k ∈ Vs (5.34)

∑
(j,k)∈δ−(k)

qkjk =
∑

(i,k)∈δ−(k)

xik k ∈ Vs (5.35)

∑
(i,k)∈δ+(k)

xik =
∑

(i,k)∈δ−(k)

xik k ∈ Vst (5.36)

∑
(s,j)∈δ+(s)

xsj = 1 (5.37)

∑
(i,t)∈δ−(t)

xit = 1 (5.38)

qkij ≥ 0, xij ≥ 0 (i, j) ∈ A, k ∈ Vs. (5.39)

In order to compare MCF and GCS, we need to project out also the q-variables of
the MCF formulation. Let us define the sets:

X = {x ∈ Rm | x satisfies (5.36), (5.37) and (5.38)},
PGCS = {x ∈ X | x satisfies (5.8)},
PMCF = {(x, q) ∈ Rmn | (x, q) satisfies (5.32)–(5.39)},
P rojx(PMCF ) = {x ∈ X | ∃ q s.t. (x, q) ∈ PMCF },

where PGCS is the GCS-polytope, PMCF is the MCF -polytope and Projx(PMCF )
is its projection onto the x-space. It is convenient to rewrite Constraints (5.32)–
(5.35) in matrix form as follows:

Bx+Mq = 0 (5.40)
−Dx+ Iq ≤ 0 (5.41)
x, q ≥ 0. (5.42)
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5.3. Polyhedral results

Equation (5.40) corresponds to (5.33)–(5.35), while (5.41) corresponds to (5.32).
One can easily notice that, since the n−1 flows are independent, the system can be
decomposed according to the index k. The matrixM is, in fact, block-diagonal, and
can be decomposed into n− 1 blocks Mk for all k ∈ Vs. Each block Mk represents
the node-arc incidence matrix of the graph G. I is the identity matrix, that can
be decomposed into submatrices Ik of dimension m ×m. In a similar fashion, we
also decompose B and D into submatrices Bk and Dk. The rows and columns of
Bk correspond, respectively, to the nodes and arcs of the graph G. A submatrix
Bk has zeros everywhere, except for the row corresponding to node s, with entries
of value −1 for each arc in δ−(k), and the row corresponding to node k, with +1
entries for each arc in δ−(k). Each row of Dk corresponds to a variable qkij and has
zeros everywhere, except for a +1 in the column associated with variable xij .

We now make use of Theorem 2 in [PS91], by which the projection onto the
x-space of the polytope PMCF defined by (5.40)–(5.41) can be obtained as:

Projx(PMCF ) = {x ∈ X | (uB − vD − w)x ≤ 0
∀(u, v, w) ∈ C},

(5.43)

where C is the cone defined as:

C = {(u, v, w) | uM + vI ≥ 0, v ≥ 0, w ≥ 0}.

The result allows us to carry out the comparison between PGCS and Projx(PMCF )
simply by finding a system of generators for the cone C.

From the inequalities w ≥ 0 we obtain extreme rays of the form u = 0, v = 0,
w = ei, where ei is the i-th standard basis vector of Rm, that yield the nonnegativity
constraints

xij ≥ 0 ∀ (i, j) ∈ A. (5.44)

This allows us to restrict our following study to the cone C ′ defined as:

C ′ = {(u, v) | uM + vI ≥ 0, v ≥ 0}.

Exploiting the decomposition of M , we can work on the even smaller cones:

Ck = {(uk, vk) | ukMk + vk ≥ 0, vk ≥ 0}. (5.45)

Due to (5.43), once we have the system of generators (uk, vk) for each cone Ck,
the constraints in the x-space are obtained by calculating (ukBk − vkDk)x ≤ 0 for
each k ∈ Vs.

According to Proposition 6 in [PS91], a full system of generators of a cone Ck
defined as in (5.45), where Mk is a node-arc incidence matrix of a digraph, is given
by:
- a basis of its lineality space, of the form:

uk = ±e, vk = 0,
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Chapter 5. Subtour elimination in elementary-path problems

where e is the all-ones vector, that in our case translate to the trivial equality 0 = 0,
and
- the extreme rays, given by all the positive multiples of the vector (uk, vk) such
that:

(i) uki = 0 ∀i ∈ V, vkij =
{

1 for one (i, j) ∈ A
0 otherwise

(ii) uki =
{

1 ∀ i ∈ S,
0 otherwise

vkij =
{

1 ∀ i ∈ S̄, j ∈ S,
0 otherwise

(iii) uki =
{
−1 ∀ i ∈ S,
0 otherwise

vkij =
{

1 ∀ i ∈ S, j ∈ S̄,
0 otherwise

for any S ⊆ V , where S̄ = V \ S. The extreme rays of the form (i) give rise to
nonnegativity constraints.

From the extreme rays given by (ii) and (iii) we obtain the inequalities:

− x(δ−(S)) + ukx(δ−(k))− usx(δ−(k)) ≤ 0 (5.46)
− x(δ+(S))− ukx(δ−(k)) + usx(δ−(k)) ≤ 0 (5.47)

where ui = 1 if i ∈ S, and 0 otherwise. For both (5.46) and (5.47), we can
distinguish four cases depending on whether s and k are in S, thus whether us, uk
are 0 or 1. If both s and k are in S, or neither of them is, the inequality is implied
by the nonnegativity constraints (5.44). If only the coefficient with negative sign
is nonzero, the corresponding inequality is, again, redundant. Therefore, the only
meaningful cases are the following:

x(δ−(S)) ≥ x(δ−(k)) ∀S ⊆ V, s /∈ S, k ∈ S (5.48)
x(δ+(S)) ≥ x(δ−(k)) ∀S ⊆ V, s ∈ S, k /∈ S. (5.49)

We have established so far that Projx(PMCF ) is fully described by the nonneg-
ativity constraints and Constraints (5.48)–(5.49). This set of inequalities can be
shown to be equivalent to:

x(δ+(S)) ≥ x(δ+(k)) ∀S ⊆ Vst, k ∈ S. (5.50)

Constraint (5.48) and (5.49) are equivalent, due to the fact that x(δ+(S)) =
x(δ−(S̄)). Let us then consider only (5.48). For k = t, the inequality is trivially
satisfied by all x ∈ X, thus redundant. For k 6= t and t /∈ S, we obtain exactly
the inequalities in (5.50), since by (5.36)–(5.38), we have that x(δ−(k)) = x(δ+(k))
and x(δ−(S)) = x(δ+(S)) for any S containing neither s nor t. If k 6= t and t ∈ S,
it suffices to observe that, since δ+(t) = 0, the inequality x(δ−(S)) ≥ x(δ−(k))
is implied by x(δ−(S \ {t})) ≥ x(δ−(k)), which, again, can be rewritten in the
form (5.50).
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Hence, the projection of PMCF onto the x-space is given by

Projx(PMCF ) = {x ∈ X | x satisfies (5.36)–(5.38) and (5.50)},

and it follows that Projx(PMCF ) = PGCS .

From this result and Proposition 5.4, it also follows that formulation MCF is
stronger than formulation DFJ.

5.4 Computational comparison
To understand the behavior of the formulations, we report computational experi-
ments not only with pricing subproblems of the path formulation of UFP-MMF,
but also with other instances from the literature. We will compare the described
formulations with respect to their LP relaxation bounds and their behavior within
an exact branch-and-bound framework.

Three types of instances are considered for the tests. The first set consists of
180 instances from the pricing phase of UFP-MMF on small-sized networks from
the SNDlib [OWPT10], namely, the topologies, atlanta, france, geant, germany,
nobel-us, polska. The second set is a set of 240 small to medium-sized random-
cost graphs, either sparse (rnd-s) or dense (rnd-d). The graphs for the instances
in rnd-s are generated by building a connected component including all the nodes,
and then randomly adding arcs until the desired sparsity is reached. The instances
in rnd-d are the dense instances in [Dre13], with random arc costs on a complete
graph. The third set (prc) contains 270 pricing instances from [Dre13]. It consists
of small and medium-size pricing problems from a column generation algorithm
for the asymmetric m-salesmen TSP at the first (f), penultimate (p) and last (l)
pricing iterations. Table 5.2 summarizes the features of the test instances.

n m range #
polska 12 36 [−10000,10000] 30

nobel-us 14 42 [−10000,10000] 30
atlanta 15 44 [−10000,10000] 30

geant 22 72 [−10000,10000] 30
france 25 90 [−10000,10000] 30

germany 50 176 [−10000,10000] 30
rnd-s 50/100/200 164/660/2654 [−1000,1000] 90
rnd-s 500/1000 16634/66601 [−1000,1000] 60
rnd-d 25/50/100 600/2450/9900 [−1000,1000] 90
prc-f 27/52/102 702/2652/10302 [−108,−9.48 · 107] 90
prc-p 27/52/102 702/2652/10302 [−4 · 104, 5.18 · 106] 90
prc-l 27/52/102 702/2652/10302 [−4 · 104, 5.18 · 106] 90

Table 5.2: Description of the instances.
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Chapter 5. Subtour elimination in elementary-path problems

5.4.1 Linear programming relaxation bounds

The LP relaxation bounds are computed constructing the complete model for the
extended formulations and for formulation DFJ. We have not implemented a sep-
aration procedure for the DFJ SECs, since they are dominated by the GCS in-
equalities and there is no point in using them in practice. However, we include
them here (when the size of the network allows it) to give an idea of difference
of the bound with respect to the GCS inequalities. For formulation GCS, we use
a Min Cut-based separation procedure (its implementation details are left to the
next section). The tests are carried out with IBM ILOG Cplex 12.5 on an Intel
Xeon E5645 @2.40GHz.

Table 5.3 reports the average gap of the LP relaxation bounds with respect to
the optimal integer values, computed as 100 |BoundLP−Opt|

|BoundLP | . The results confirm
that the LP bounds of MCF and GCS are equivalent, and show that they are by
far the tightest formulations. Remarkably, MCF and GCS close the gap on a good
fraction of instances (roughly 50%), while all the remaining formulations have a
relaxation with 0 gap only in less than 10% of the considered instances. However,
on the largest instances, the LP relaxation of the MCF formulation could not be
solved within the time limit of 1200 seconds. Observe the considerable difference
between GCS and classic DFJ, while formulations RLT and SF provide similar
bounds.

For the prc-f instances, all the extended formulations provide good bounds.
The reason is that, on the majority of those instances, all the arcs have very
similar costs, hence the integrality gap is inherently small for all the formulations.
It is worthwhile to point out that, even when the bounds are very good, weaker
formulations find solutions with many more fractional values.

5.4.2 Branch-and-cut

Since we aim at integer solutions, let us compare the behavior of an off-the-shelf
MIP solver with the considered formulations. The formulations and the separation
procedures were implemented in C++ with IBM Ilog Cplex/Concert 12.5, using
default settings.

For the polynomial-size extended formulations, the full model is built. Formu-
lation DFJ is not included in these tests. For GCS, we report results obtained
with two different separation routines, that we denote by GCS-StrongComp and
GCS-MinCut. For GCS-StrongComp, the separation is carried out for fractional
and integer solutions, identifying the strongly connected components in the support
graph induced by the variables xij . This can be done in a O(n+m) running time
with Tarjan’s algorithm. Once a strong component S has been found, it is enough
to check if Constraint (5.8) is violated for any of the nodes in S. This separation
procedure is efficient, but not guaranteed to find all the violated inequalities on frac-
tional solutions. Correctness is preserved by the fact that the procedure is exact
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5.4. Computational comparison

GCS DFJ MTZ RLT SF MCF
polska 37.87 67.85 69.57 61.73 63.35 37.87

nobel-us 26.48 66.60 71.96 69.07 69.72 26.48
atlanta 9.91 35.25 42.80 36.46 37.53 9.91

geant 5.52 - 32.02 30.90 31.06 5.52
france 4.33 - 64.50 59.88 60.37 4.33

germany 2.03 - 31.47 31.29 31.31 2.03
rnd-50-s 0.43 - 11.38 10.91 10.94 0.43

rnd-100-s 0.22 - 1.57 1.52 1.53 0.22
rnd-200-s 0.02 - 0.42 0.42 0.42 -
rnd-500-s 0.00 - 0.06 0.06 0.06 -
rnd-25-d 0.19 - 0.56 0.46 0.47 0.19
rnd-50-d 0.04 - 0.14 0.12 0.12 0.04

rnd-100-d 0.01 - 0.03 0.03 0.03 -
prc-25-f 0.00 - 0.03 0.02 0.02 0.00
prc-50-f 0.00 - 0.01 0.01 0.01 0.00

prc-100-f 0.00 - 0.00 0.00 0.00 -
prc-25-p 9.72 - 91.68 87.41 87.65 9.72
prc-50-p 7.92 - 80.50 77.40 77.49 7.92

prc-100-p 1.96 - 60.70 42.66 42.93 -
prc-25-l 1.34 - 86.73 81.06 81.39 1.34
prc-50-l 2.18 - 54.75 48.99 49.17 2.18

prc-100-l 2.44 - 60.87 42.55 42.83 -

Table 5.3: Average LP relaxation gaps (%) w.r.t. the optimal integer solution.
Missing values are due to time (MCF) or memory limits (DFJ).

for integer solutions. For GCS-MinCut, the separation is carried out on fractional
solutions by solving a sequence of Min Cut (or Max Flow) problems between each
node and t, with an overall worst-case complexity of O(n3√n) using the highest-
label preflow-push algorithm described, e.g., in [AMO93]. All violated inequalities
are identified, although with higher computational cost. On the incumbents, the
faster strong components-based procedure is used.

For the Min Cut problems and the identification of strongly connected com-
ponents, we use the efficient implementations in the open-source LEMON Graph
Library 1.3 [DJK11]. We refer the interested reader to [Dre13] for additional con-
siderations on the separation of subtour elimination constraints for the ELPP.

In Table 5.4 we summarize the results over the test instances. Column “opt”
reports the fraction of instances that are solved to optimality within the time limit
of 1200 seconds. Column “time” reports the average computing time. Column
“nodes” reports the average number of explored nodes in the branch-and-bound
tree. Column “cuts” reports the average number of GCS inequalities added by the
separation procedures.

Both GCS variants solve to optimality all the instances, except the ones in
rnd-1000-s, and prove to be by far the best choice for the largest instances. For-
mulation GCS-MinCut usually explores fewer nodes in the search tree, while the
number of cuts is similar. However, with respect to the average computing time,
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Chapter 5. Subtour elimination in elementary-path problems

GCS-StrongComp has an advantage over GCS-MinCut, especially on the largest in-
stances, where solving a sequence of Min Cut problems is computationally heavy.
GCS-StrongComp is the only formulation able to solve one of the rnd-1000-s in-
stances, with 1000 nodes and 66601 arcs, within the time limit.

Compared to the extended formulations, GCS-StrongComp is a clear winner on
the rnd and prc instances, where it is often more than one order of magnitude
faster. Formulation MCF, despite the good LP bounds, appears to be too heavy
for large-sized instances.

Figure 5.3 summarizes the computational experiments. On the y-axis, we report
the fraction of all the instances that are solved to optimality within the time on
the x-axis. Note that the left part of the x-axis is in linear scale, while the right
part is logarithmic. GCS-StrongComp is the topmost curve, solving more than
80% of the instances within 20 seconds, and 90% in 50. GCS-MinCut is not far
behind, although it is generally slower. Both solve over 95% of the instances within
1200 seconds. Formulations RLT, SF and MTZ have similar results on the easiest
instances, although, overall, SF is able to solve around 85% of the instances within
the time limit, while RLT and MTZ solve, respectively, less then 78% and 72%
of them. Formulation MCF (bottom curve) solves the smallest fraction of the
instances (around 65%).
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Figure 5.3: Fraction of instances solved to optimality within a given time. The
x-axis is in linear scale before the break (up to 85), logarithmic scale after the
break (90 to 1200).

Focusing on the UFP-MMF pricing instances, the results show that all for-
mulations are close as long as the size is modest. On the germany instances,
MCF and MTZ are clearly worse than the others. Then, in the pricing phase of
the branch-and-price algorithm, we will use the GCS formulation with the strong
component-based separation procedure, which seems to be, on average, the fastest
and most stable approach. From these computational results, we expect that GCS
should behave well also in the arc formulation of UFP-MMF.
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CHAPTER6

Computational experiments

In this chapter we report computational results of the MIP-based and heuristic
approaches for UFP-MMF and its relaxations. We first describe the instances used
in the computational experiments and some implementation details. Section 6.3
is devoted to the exact methods: we first discuss computational experiments with
the branch-and-price algorithm, and then report the results obtained with the
branch-and-cut approach. Section 6.4 discusses computational results of heuristic
algorithms for UFP-MMF, which are essential in order to obtain good solutions for
the most challenging instances. Section 6.5 includes computational experiments
with the relaxations of UFP-MMF described in Chapter 4. Section 6.6 describes
how the feasible solutions obtained with the heuristics and the upper bound ob-
tained from the relaxations are effective in closing the gap for a large part of the
instances. In Section 6.7 we analyze the impact of max-min fairness on the achiev-
able throughput and the structure of the solutions for different variants of the
problem. Finally, in Section 6.8 we give some concluding remarks.
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6.1 Instances

The computational experiments have been carried out on a set of network topolo-
gies obtained from the Survivable Network Design library [OWPT10]. The library
contains realistic backbone networks used as benchmarks for network design prob-
lems. For each topology, we consider a set of instances that differ for the arc
capacities and for the set K of origin-destination pairs. The main features of the
considered instances are summarized in Table 6.1, that reports the size of the
graph (number of nodes and arcs), the cardinality of the considered sets K (let
k := |K|), and the number of different UFP-MMF instances that are included for
each topology. Since the library contains undirected graphs, the directed graphs

Table 6.1: Summary of the instances used in the experiments.

nodes arcs k number of instances

polska 12 36 {10, 21, 28, 36, 42, 50} 4 for each k (24)
nobel-us 14 42 {15, 21, 28, 36, 42, 50} 4 for each k (24)
atlanta 15 44 {12, 20, 30, 42} 4 for each k (16)
france 25 90 {10, 15, 21, 28, 36, 45} 4 for each k (24)
geant 22 72 {12, 20, 30, 42, 56, 72} 3 for each k (18)
germany 50 176 {10, 15, 20, 26, 34, 41} 3 for each k (18)

are obtained simply considering, for each original edge, the arcs in both direc-
tions. The sets K ⊂ V ×V of origin-destination pairs are extracted randomly from
a subset of candidate nodes. Specifically, for the topologies polska, nobel-us,
atlanta and france, for a given cardinality k we consider two different sets K1
and K2, and for each of them we have an instance with uniform capacities and
one with non-uniform ones (thus, a total of 4 different instances for each value of
k). For the topologies geant and germany, for each cardinality k we consider a
single set K, and we build three instances: one with uniform capacities, and two
with non-uniform ones (thus, 3 different instances for each value of k). The arc
capacities in the uniform instances are cij = 1000 ∀(i, j) ∈ A, while in the non-
uniform instances they are assigned randomly to each arc from a discrete set of
predefined values, namely cij ∈ {1000, 2500, 5000, 10000}, with probability respec-
tively {10%, 20%, 40%, 30%}. Subsets of these instances have already been used
in [ACT14, ACCG13].

In Figure 6.1, we report, when available, the representation of the original
network topologies.
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Figure 6.1: Network topologies, in clockwise order: geant, germany, nobel-us
and polska.

6.2 Implementation

The branch-and-cut algorithm for the arc formulation of UFP-MMF (Section 3.2),
its relaxations (Chapter 4), and the restricted path heuristic (Section 3.6) have
been implemented in C++ using the Concert library of IBM ILOG CPLEX 12.5.
In particular, the rounding heuristics and the cutting plane separation procedures
were implemented as CPLEX callbacks.

The branch-and-price algorithm has been implemented using the open-source
framework SCIP1 3.0.1 [Ach09] developed by ZIB, with IBM ILOG CPLEX 12.5
as the underlying LP solver.

For the separation of GCS inequalities, both in the pricing subproblems and in
the branch-and-cut, we identify strongly connected components using the efficient
implementation of Tarjan’s algorithm in the open-source LEMON Graph Library
1.3 [DJK11]. More details on the separation procedure can be found in Chapter 5.

The heuristic algorithms described in Section 3.6 have been implemented in

1CPLEX does not allow column generation within its branch-and-bound, to this date.
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C++11 compiled with GCC 4.6.4. It is worth noting that, in this case, we use
custom implementations of all the graph algorithms that are involved (Dijikstra-
based shortest and widest path, waterfilling).

All the tests have been carried out on an Intel Xeon E5645 @2.40GHz with
16GB of RAM. Each run was limited to a maximum time of 3600 seconds.

6.3 Exact methods
Let us focus first on the exact methods described in Chapter 3. We have seen
that the path formulation allows us to impose elementarity of the paths in a rather
natural way. Moreover, the column generation algorithm solves the LP relaxation
efficiently. However, we will show that using a branch-and-cut algorithm with the
separation of the GCS inequalities proves more effective.

6.3.1 Branch-and-price
The path formulation of UFP-MMF, solved via column generation, is guaranteed
to provide relaxation bounds that are at least as good as those of the arc formu-
lation, due to the properties of Dantzig-Wolfe reformulations. In Table 6.2, the
computational results suggest that the improvement in the quality of the bounds
is typically modest: only for some france, geant and polska instances the bound
is different. Nevertheless, the column generation approach appears potentially at-
tractive, as it is able to achieve a significant speedup in solving the LP relaxation.

Table 6.2: Results for the LP relaxation of the arc formulation and the path for-
mulation solved via column generation (% gap, computed w.r.t. the best known
solution, and time to optimality in seconds).

Arc formulation Path formulation
gap time gap time

polska 1.94 1.0 1.93 0.8
nobel-us 2.42 1.4 2.42 1.3
atlanta 1.64 1.0 1.64 1.0
france 1.21 19.0 1.20 6.9
geant 2.89 13.4 2.88 7.2
germany 3.66 2519.0 3.66 772.5

Even for the instances where the gap is 0, the solution obtained for the linear
relaxation at the root node typically contains many fractional values. Then, it is
necessary to resort to the full branch-and-price algorithm. During the experiments,
several variants have been evaluated. Let us briefly discuss them.

86



6.3. Exact methods

Branching rules: Branching on the λpst variables is ineffective, as the pricing
phase often proposes paths that have already been generated (and branched on),
leading to a rapidly growing search tree. On the other hand, our results indicated
that an effective branching strategy is to relax the integrality on the path variables
λstp , and branch on the value of the original arc variables, i.e.,

∑
p∈P st λstp σ

pst
ij ,

that, in an optimal solution, must be equal to 0 or 1. Preliminary experiments
also showed that imposing a high branching priority on the bottleneck variables
ystij leads to poorer performance; then, we let the solver (SCIP) balance branching
on the arc or the bottleneck variables.

Pricing: We have described in Section 3.5.3 how, before solving the ELPP pric-
ing problem as a MILP, we carry out some heuristic steps in an attempt to quickly
identify a variable of positive reduced cost. If the heuristics fail, we resort to the
MILP solver, where we use an elementary longest path formulation with dynamic
generation of GCS subtour elimination constraints. The graphs in the pricing sub-
problems typically exhibit a fairly high level of sparsity, in the sense that most of
the arc weights are 0 (see Table 6.3). For this reason, even when the MILP has

Table 6.3: Average arc weight sparsity in the pricing subproblems.

sparsity (% nonzeros)

polska 4.59
nobel-us 4.30
atlanta 3.65
france 3.91
geant 2.60
germany 1.68

to be solved, the pricing problems are usually solved rather quickly (see computa-
tional results in Chapter 5). The convergence of the column generation algorithm
is also quite steady, and stabilization was not deemed necessary. Experiments with
a smoothing technique similar to the one described in [Nea00] proved ineffective:
stabilization sometimes causes mispricing and generally yields harder (more dense)
pricing subproblems, resulting in a larger overall computing time even when the
convergence rate as a function of the number of iteration is improved (see Fig-
ure 6.2).

Column pool initialization: In order to initialize the column generation algo-
rithm, we populate the initial pool of columns by generating a set of initial paths
for each (s, t) ∈ K that are as diverse as possible. This is achieved by repeatedly
finding shortest paths from s to t in an appropriately weighted graph. We have
observed that the column generation algorithm is not very sensitive to the number
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Figure 6.2: Primal bound and Dantzig-Wolfe dual bound2vs. number of iterations
solving the LP relaxation for instances france_7_1 (left) and germany_8_2
(right). Although the plots show that the convergence rate, in terms of itera-
tions, is better with stabilization (reduced tailing-off effect), for both instances
the computing time is larger with smoothing (more than twice for germany_8_2),
since the pricing subproblems are significantly harder.

of initial paths.

Heuristics: The choice of which heuristics to use and how to combine them
requires a fine tuning which is not effortless. Modifying the frequency or the depth
where a heuristic is invoked can greatly affect the efficiency of the branch-and-
bound search, especially for computationally-heavy heuristics, such as solving the
restricted path formulation. According to our experiments, the best configuration
is to include the probabilistic path rounding heuristic and the probabilistic shortest-
path based heuristic (Section 3.6.1) at each node of the branch-and-bound, while
the restricted path formulation (Section 3.6.2) is solved with a small time limit (10
seconds) at the root node and every 50 explored nodes, up to a maximum depth
of 9.

In Table 6.4, we summarize the results of the branch-and-price algorithm. We
report the average gap at the time limit (3600 seconds), the average computing
time to reach optimality and the fraction of solutions which have been certified
optimal.

The experiments with the branch-and-price show that, despite solving the LP
relaxation more efficiently, on a large fraction of the instances optimality remains
out of reach. The algorithm has difficulties in particular on the instances in geant
and germany, where it is often not able to find good solutions. Note that the

2The DW dual bound is computed at each iteration as the sum of the current solution value
and the value of the maximum reduced cost column (in our case,

∑
(s,t)∈K(φst +OPT st −ωst),

where OPT st is the optimal value of the pricing subproblem for (s, t).
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Table 6.4: Results of the branch-and-price for UFP-MMF (average % gap at the
time limit, average time for instances solved to optimality and fraction of optima
found).

gap time to opt opt

polska 1.60 281.24 8/24
nobel-us 2.17 11.02 4/24
atlanta 1.17 36.03 6/16
france 1.87 444.12 11/24
geant 9.00 5.05 2/18
germany 15.15 5.45 2/18

average computing time to optimality is larger for the sets where more instances
can be solved: this simply indicates that harder instances can be solved, while on
geant and germany only the smallest-size instances are solved.

Clearly, the fact that the LP bound is not significantly stronger than the one
of the arc formulation means that, in a way, a large part of the difficulty of the
problem remains in the master, i.e., in the bottleneck constraints. We would have
expected the column generation bound to be better, since the pricing subproblem
is an elementary longest path problem, which is notoriously hard. However, as we
have mentioned, it appears that in practice the UFP-MMF pricing subproblems
are quite easy, even after branching. This might explain the LP bounds not being
tighter. In the end, exploiting the path formulation structure, although it allows
for solving the linear relaxations faster, is not sufficient to outperform a branch-
and-cut solving the arc formulation, as we will see in the next paragraph.

6.3.2 Branch-and-cut

Since UFP-MMF is still challenging for the branch-and-price algorithm, let us now
consider a branch-and-cut approach for the arc-based formulation.

The arc formulation of UFP-MMF (3.9)–(3.19) requires imposing explicitly the
elementarity of the paths for each origin-destination pair (s, t). In Chapter 5,
we have discussed mixed-integer programming formulations to prevent subtours in
elementary paths problems. Our conclusion was that the extended formulations
either give weak linear relaxations, or are too heavy to be competitive with the
separation of generalized cutset inequalities (GCS) with the strong component-
based separation procedure. Indeed, computational experiments with the different
formulations confirm that the cutset inequalities are the best option also for UFP-
MMF. Specifically, the extended formulations yield weaker LP relaxations — except
for MCF, which gives the same bound of GCS, but is too large to be of practical
interest.
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A second crucial point of the formulation consists of the MMF conditions them-
selves. In Chapter 3, we have described how the arc formulation for UFP-MMF can
be tightened with valid inequalities derived from the properties of max-min fair-
ness. In Table 6.5 we compare the LP relaxation bound obtained from the basic
formulation (3.9)–(3.19) and the ones with the additional valid bounds and inequal-
ities (3.23), (3.27), (3.28), (3.29), (3.31),(3.32), which are all effective in tightening
the formulation. The linearized inequalities (3.38), (3.43) and (3.53), along with
their linearization constraints, yield some minor improvement in the bound, but
do not appear to strengthen the formulation any more than using the inequalities
(3.29), (3.31) and (3.32). Hence, the latter (which are fewer) are to be preferred.
Table 6.5 also includes the LP bounds obtained adding Constraints (4.20)–(4.26)
from the dual-based formulation of UFP-MB, which are valid also for UFP-MMF.
The gaps are computed with respect to the best known feasible solution (optimal,
when possible).

Table 6.5: Results for the LP relaxation of UFP-MMF with and without valid
inequalities (% gaps computed with the best known feasible solution). †Not all
instances solved within the time limit.

Basic form. Valid ineq. Valid + MB dual
gap time gap time gap time

polska 2.57 0.32 1.94 0.96 1.89 6.54
nobel-us 2.91 0.53 2.42 1.42 2.40 17.86
atlanta 2.02 0.42 1.64 1.01 1.61 13.11
france 2.16 8.67 1.21 19.00 1.19 162.14
geant 4.49 6.25 2.89 13.45 2.89 570.47
germany 11.51 874.49 3.66 2519.02 2.09† 2516.98†

The valid inequalities are clearly effective in providing better bounds: the dif-
ference is especially significant for geant and germany instances. Adding the MB
dual-based constraints yields an even stronger bound, although with a rather steep
increase in computing time.

We are especially interested in a tight formulation if the branch-and-bound
search can benefit from it. The impact of the strengthened formulation in a
full branch-and-cut algorithm (including the rounding heuristics described in Sec-
tion 3.6) can be seen in the results summarized in Table 6.6, where we report the
average gap and the fraction of instances certified optimal with the three formu-
lations. The average gap at the time limit of the tightened formulation is better
for all the topologies. Even more interestingly, the number of instances solved to
optimality in 1 hour is significantly larger adopting the valid inequalities. The re-
sults with the UFP-MB dual-based valid inequalities are competitive only for the
small-size topologies; however, on larger networks the size of the formulation is
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Table 6.6: Results of the branch-and-cut for UFP-MMF with and without valid
inequalities. †We do not report the average gap, since we obtained a finite gap
only for a small subset of the instance.

Basic form. Valid ineq. Valid + dual
gap opt gap opt gap opt

polska 2.86 8/24 1.76 8/24 1.92 8/24
nobel-us 3.46 4/24 2.08 6/24 2.78 6/24
atlanta 2.03 5/16 1.64 7/16 2.20 7/16
france 1.75 11/24 1.63 12/24 7.37 9/24
geant 5.09 1/18 5.06 3/18 –† 2/18
germany 11.51 2/18 9.28 3/18 –† 2/18

too large to carry out an effective branch-and-bound (note that all the dual-based
inequalities have to be added to the formulation, since we do not have a separation
procedure for them).

We have observed that even the simple rounding heuristics are essential, since,
in practice, off-the-shelf solvers have serious difficulties in finding feasible solutions
for UFP-MMF. The effect of disabling them is summarized in Table 6.7, where
we compare our branch-and-cut results with those obtained disabling the rounding
heuristics, using only CPLEX’s default ones. We report the fraction of instances
where a feasible solution is found and the instances solved to optimality. Notice
how, for a remarkable number of instances, CPLEX’s default heuristics are not
able to find a single feasible solution within the time limit of 1 hour.

Table 6.7: Results of the branch-and-cut for UFP-MMF with and without rounding
heuristics (fraction of instances where a feasible (optimal) solution was found).
In both cases, all CPLEX’s default heuristics are enabled.

CPLEX default Rounding heuristics
feasible opt feasible opt

polska 13/24 7/24 24/24 8/24
nobel-us 12/24 6/24 24/24 6/24
atlanta 12/16 7/16 16/16 7/16
france 14/24 11/24 24/24 12/24
geant 4/18 3/18 18/18 3/18
germany 3/18 1/18 18/18 3/18

The results summarized in Table 6.6 and 6.7 show that, even using GCS in-
equalities, strengthening the formulation with valid inequalities, and using ad-hoc
rounding heuristics, it is not easy to close the gap. For a small-to-medium num-
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ber of origin-destination pairs, UFP-MMF is typically solved to optimality in a
few seconds for all the topologies. However, when the cardinality of K grows, in
particular for the largest networks geant and germany, the size of the LP relax-
ation and the time spent by CPLEX generating cutting planes do not allow the
exploration of more than a handful of nodes within the time limit (1 hour), with
an obvious deterioration of the results, in particular concerning the quality of the
solutions found.

Finally, let us compare side by side the results obtained with the branch-and-
cut and the branch-and-price algorithm, summarized in Table 6.8. It is worth
noting that the branch-and-price relies on the open-source solver SCIP. We have
observed that the branch-and-cut of CPLEX is significantly more efficient than
the one of SCIP3, so we do not exclude that, if it were possible to integrate the
column generation algorithm within CPLEX’s branch-and-bound, the branch-and-
price results could be significantly improved. So far, it is clear that the branch-and-
price algorithm is not superior to the branch-and-cut approach with separation of
GCS inequalities. Nevertheless, both approaches encounter difficulties especially
in finding good solutions.

Table 6.8: Comparison of the branch-and-price and the branch-and-cut results for
UFP-MMF (from Table 6.4 and 6.6).

Branch-and-price Branch-and-cut
gap opt gap opt

polska 1.60 8/24 1.76 8/24
nobel-us 2.17 4/24 2.08 6/24
atlanta 1.17 6/16 1.64 7/16
geant 1.87 11/24 1.63 12/24
france 9.00 2/18 5.06 3/18
germany 15.15 2/18 9.28 3/18

6.4 Finding primal solutions: heuristics
As we have seen, UFP-MMF is very challenging to solve only with MIP-based exact
methods. In particular, while we have observed that the bounds obtained with the
branch-and-bound approaches are of good quality, finding the optimal solutions
appears to be very difficult. Heuristics can play an essential role in providing
good, and possibly optimal, solutions in reasonably short computing time. Let
us summarize computational experiments with standalone heuristic approaches,

3According to the benchmarks by H. Mittelman (http://plato.asu.edu/ftp/milpc.html) on
87 instances of the MIPLIB2010, CPLEX 12.6 is, on average, roughly 5 times faster than SCIP
3.1.0
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described in Section 3.6: the restricted path formulation, the randomized greedy
heuristic and the local search with variable neighborhood exploration.

A remark is in order: all the gaps reported in this section are computed with
respect to the optimal value, when available, or to the best known upper bound.

6.4.1 Restricted path formulation

A first, simple approach to UFP-MMF consists of solving the path formulation
with a restricted set of path variables that are generated a priori. Clearly, this
is only a heuristic, since there is no guarantee that a path not included in the
formulation would not improve the solution. This approach was originally proposed
in [ACCG13].

In order to cover the set of all possible origin-destination paths P st in the best
possible way, we try to construct a subset of paths that are as diverse as possible.
For each (s, t), we generate paths by repeatedly finding shortest paths from s to t
in a copy of the graph G where the arcs are assigned a weight wij ≥ 0. The arc
weights are initialized to a random nonnegative value; then, each time a new path
is generated, the cost of the arcs therein contained is increased, thus promoting
diversity among the paths. More specifically, for each (s, t) pair in K, the number
of paths we generate is proportional (by a factor ω) to the minimum (s, t)-cut in the
graph with unit arc capacities, i.e., the number of edge-disjoint paths connecting
s and t. We adopt this value, that we indicate with γst, as a proxy for the total
number of distinct paths between s and t: if a (s, t) pair has more connecting
edge-disjoint paths, we assume that there will be more alternative paths — thus
we generate more of them. In particular, for our tests we generate a number of
paths for each OD pair which is equal to ωγst, with ω = 2. Then, the number of
path variables in the formulation will be

∑
(s,t)∈K ωγ

st. Table 6.9 reports the gap

Table 6.9: Results for UFP-MMF with the restricted path formulation, with ω = 2,
solved with CPLEX ( average % gap with respect to best known upper bound,
average computing time and fraction of optimal solutions).

gap time opt

polska 1.64 1150.86 10/24
nobel-us 1.40 1140.94 9/24
atlanta 3.39 1073.72 3/16
france 5.81 987.60 6/24
geant 4.16 1637.35 2/18
germany 11.32 1146.00 2/18

with respect to the best known UFP-MMF upper bound, the average computing
time (we set a time limit of 3600 seconds) and the number of solutions known to
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be optimal. The restricted path formulation gives rather good solutions when the
topologies are small: on nobel-us and polska, that have a small number of arcs
and, therefore, a small number of alternative (s, t)-paths, the solutions are less
than 2% from the optimum. On the other hand, the approach seems ineffective
on the largest topologies, in particular for germany, where the average gap is more
than 10%. To give an idea of the size of the full set P st for a given (s, t) pair,
the number of all possible elementary paths connecting two nodes s and t in the
smallest network (polska) is, on average, around 50, while, for germany, it can be
well over 50 millions4.

Note that the MILPs require a rather large computing time, even with ω = 2,
and on the hardest instances the convergence of the algorithm is often not reached
within the time limit. For this reason, increasing the factor ω does not appear to
be a viable option.

6.4.2 Randomized greedy heuristic
Let us consider the multistart randomized greedy algorithm described in Section 3.6
(Algorithm 3.2). The solutions obtained with this simple heuristic are typically
around 5% from the optimal value in below 2 minutes of computing time; we do
not report detailed results here for sake of brevity. Extending the algorithm with
an intensification phase (Algorithm 3.3) further improves the quality of the solu-
tions. Let us recall that the idea is to adopt a partial randomization when we
find a solution which improves upon the global best. This phase requires tuning
two parameters controlling the tradeoff between intensification and diversification:
Reuse_percentage, the fraction of the paths from the best solution that are
retained during the intensification phase (i.e., how many of them are fixed in the
greedy algorithm), and Nreuse, the number of local search attempts in the neigh-
borhood of such solution. Table 6.10 summarizes the procedure that was carried
out to identify the best parameters (with 5000 iterations).

Table 6.10: Results for the multistart randomized algorithm with intensification
phase, for different values of the parameters Reuse_percentage and Nreuse
(MaxIt = 5000).

Reuse_perc. 0.3 0.5 0.7 0.9
Nreuse gap opt gap opt gap opt gap opt

20 4.89 27/124 4.78 25/124 4.86 24/124 5.16 23/124
30 4.97 22/124 4.76 27/124 4.72 26/124 5.03 23/124
50 4.97 26/124 4.79 24/124 4.78 25/124 5.06 26/124
100 4.76 27/124 4.66 27/124 4.78 25/124 5.13 25/124

4Elementary paths computed with the function all_simple_paths of the Python library Net-
workX [HSS08]. The computation, for germany, was stopped after 30 minutes.
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In Table 6.11 we report additional results for the settings Reuse_percentage =
0.5, Nreuse = 100, which are the best among those we tested.

Table 6.11: Results for UFP-MMF with the multistart randomized algorithm and
intensification phase with Reuse_percentage = 0.5, Nreuse = 100.

MaxIt 10000 15000

gap time opt gap time opt

polska 4.42 40.8(88.2) 7/24 4.26 56.2(118.8) 7/24
nobel-us 4.18 65.8(106.9) 3/24 4.12 76.9(152.1) 3/24
atlanta 2.70 47.6(71.4) 6/16 2.57 56.1(92.6) 6/16
france 2.06 47.6(131.2) 11/24 2.03 52.7(143.2) 12/24
geant 6.79 148.6(221.9) 3/18 6.49 176.5(318.5) 3/18
germany 3.35 157.1(289.0) 4/18 3.21 169.8(376.9) 4/18
total 3.88 80.4(146.5) 34/124 3.76 93.5(193.0) 35/124

With 15000 iterations, the algorithm usually reaches solutions less than 4%
from the optimum within 5 minutes, and roughly 25% of them are guaranteed to
be optimal. On france instances the algorithm finds half of the known optima,
while geant instances are the hardest ones. The heuristic appears to be useful even
for the largest-size instances of germany, that we have seen to be extremely hard
to solve with MILP-based methods.

Note that, compared to the restricted path formulation, the randomized algo-
rithm is substantially more attractive from a computational point of view: it is
able to find solutions of comparable quality (on some instances, even superior) in
far shorter computing times.

6.4.3 Local search with variable neighborhood and tabu list
In Section 3.6.4 we have introduced a local search algorithms with variable neigh-
borhood and tabu list. We recall that the algorithm consists in a hill climbing
algorithm, where we also attempt to increase the size of the neighborhood (that
depends on the parameters m and s) when we are stuck in a local optimum. When
the neighborhood has reached the maximum allowed size, we accept also a number
of non-improving moves while keeping a tabu list to avoid cycling.

The algorithm requires tuning a small number of parameters. The parameter
m0 represents the (initial) number of paths that can differ in neighboring solutions,
while s0 represents the (initial) number of solutions to be sampled from the neigh-
borhood. The increase of the neighborhood size and of the number of sampled
solutions is done with a fixed step of size 1 for the parameter m, and 200 for the
parameter s. We use a tabu list of length 2, since longer cycles are unlikely to
occur. We set the maximum number of non-improving moves to 10. We carried
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out experiments to guide the choice of the parameters m0 and s0, that control the
initial size of the neighborhood, since they appear to be the ones having the larges
impact. To determine the best combination of parameters, we first run the local
search in a multistart algorithm with 100 iterations.

Table 6.12: Results for the local search algorithm with variable neighborhood ex-
ploration, for different values of the parameters m0 and s0 (MaxIt = 100).

m0 0.3 0.5 0.7 0.9
s0 gap opt gap opt gap opt gap opt

200 0.85 51 0.81 51 0.77 53 1.05 48
400 0.88 49 0.77 52 0.74 53 1.00 49
600 0.85 53 0.74 55 0.75 55 1.02 48

Table 6.12 shows that, even with a rather small number of restarts, that cor-
responds to very short overall computing times, the algorithm achieves quite good
results: it is able to find solutions of good quality, on average below 1% from the
optimal value, in less than 2 minutes. The best combination of parameters appears
to be m0 = 4 and s0 = 600. Observe how the average computing time grows
with m0 and s0 — since for each of the s neighboring solutions we have to com-
pute m shortest paths — but the quality of the solutions is significantly worse for
m0 = 10. Let us remark that a larger m corresponds to larger neighborhoods, thus
potentially better moves. However, this does not seem to pay off: indeed, it seems
better to consider relatively smaller neighborhoods. Since we can explore them
more thoroughly, we are able to find improving solutions with higher probability.

In Table 6.13 we report additional results for the best settings, running the
algorithm with a time limit of 10 minutes. We report, for each topology, the
average time where the best solution was found, the average gap, and the number
of certified optima.

Table 6.13: Results for UFP-MMF with the local search with variable neighborhood
exploration for m0 = 4, s0 = 600 and a time limit of 600 seconds.

gap time best opt

polska 0.40 121.0 13/24
nobel-us 0.78 140.2 12/24
atlanta 0.40 62.0 8/16
france 0.57 82.3 14/24
geant 0.68 271.2 7/18
germany 0.97 151.7 5/18
total 0.63 135.9 59/124
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In this short computing time, our heuristic find the optimal solution in almost
half of the instances, with an average gap of about 0.6%. The maximum gap over
all instances is below 5%, and it exceeds 2% in only 10 instances.

6.5 Computing dual bounds: relaxations

In Chapter 4, we have described relaxations of UFP-MMF where the max-min
fairness conditions are either dropped or relaxed. We have already mentioned that
the relaxations of UFP-MMF can be used to obtain tighter dual bounds than its
LP relaxation: as we will see, some of the relaxed problems are considerably easier
than the original one, and the bounds we obtain are of good quality.

Max-throughput unsplittable flows (UFP)

The relaxed problem where the max-min fairness constraints are discarded, i.e.,
what we call the maximum unsplittable flow problem (UFP), proves to be sig-
nificantly easier to solve as a MILP. In this case, the bottleneck constraints are
lifted, and the subtour elimination constraints are also not necessary. With an arc
formulation, obtained considering Formulation (3.9)–(3.13), most instances can be
solved to optimality in a matter of seconds with CPLEX. Only the set germany is
still rather challenging, where 3 instances cannot be certified optimal within the
time limit of 1 hour. Note that, for this variant, no customized heuristics nor valid
inequalities have been developed.

Table 6.14: Average % gap, computing time and fraction of optimal solutions when
solving the arc formulation of UFP with CPLEX (time limit of 3600 seconds).

UFP gap time opt

polska 0.00 0.17 23/23
nobel-us 0.00 0.33 24/24
atlanta 0.00 0.21 16/16
france 0.00 1.61 24/24
geant 0.00 36.25 18/18
germany 0.21 217.10 15/18

Concerning the quality of the UFP bounds with respect to the optimal values
of UFP-MMF, we can see in Table 6.15 that they are rather good, and often better
than the LP bounds of Table 6.5, in particular for the instances of france and
geant. Even if the total throughput value is similar, the solutions (i.e., routing
paths and flow allocations) for UFP and UFP-MMF are, in general, quite different,
as we will see in Section 6.7.
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Table 6.15: Quality of the bounds obtained with UFP for UFP-MMF (average %
gap from the best known UFP-MMF solution).

UFP/UFP-MMF gap

polska 1.90
nobel-us 2.19
atlanta 1.48
france 0.70
geant 0.55
germany 1.19

Unsplittable flows subject to max-bottleneck fairness (UFP-MB)

UFP-MB is the relaxation where the fairness criterion at the lower level only im-
poses that the smallest flow allocation is maximized. To solve UFP-MB, in Sec-
tion 4.2 we have proposed two different formulations: the global-bottleneck (GB)
formulation, Eq. (4.1)–(4.5), and the dual-based (DB) one, Eq. (4.20)–(4.26). Com-
putational experiments show that the LP relaxation of the dual-based formulation
is always at least as strong as the global-bottleneck one, at the cost of larger com-
puting times. In Table 6.16 we summarize the branch-and-cut results with the two
formulations. In both cases, we use GCS inequalities to prevent subtours. The
global-bottleneck formulation is typically faster than the dual-based one, and the
average gap at the time limit (3600 seconds) is also smaller for GB, despite starting
with a slightly weaker LP formulation. There also is a significant difference in the
fraction of instances that are solved to optimality, with GB clearly outperforming
DB on all datasets except germany.

It is clear that, compared to UFP-MMF, the UFP-MB relaxation is substan-
tially more tractable with a branch-and-cut algorithm: UFP-MB can be solved for
instances with more than twice as many OD pairs. Even when optimality is not
reached within the time limit, the gaps are usually small, with the exception of
germany, for which the exact methods exhibit the same weaknesses discussed for
UFP-MMF.

Concerning the quality of the UFP-MB bounds with respect to the optimal
values of UFP-MMF, we can see in Table 6.17 that they are very close. The UFP-
MB/UFP-MMF gap is actually 0 for more than half of the instances. Indeed,
despite the counter-example described in Section 4.2, we have certified a nonzero
UFP-MB/UFP-MMF gap (that is, cases where UFP-MB is solved to optimality and
we know a smaller valid upper bound for UFP-MMF) in only 11 of the instances.
In several cases, the bound obtained by solving optimally UFP-MB is even better
than what we are able to achieve after 1 hour of branch-and-cut on UFP-MMF.
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Table 6.16: Results of the branch-and-cut for UFP-MB with the global-bottleneck
formulation (GB) or the dual-based one (DB) (average % gap at the time limit
and fraction of optima).

GB DB
gap opt gap opt

polska 0.03 23/24 0.49 15/24
nobel-us 0.45 20/24 0.88 12/24
atlanta 0.06 14/16 0.49 12/16
france 0.64 15/24 0.64 13/24
geant 0.73 10/18 1.91 8/18
germany 2.93 5/18 8.11 4/18

Table 6.17: Quality of the bounds obtained with UFP-MB for UFP-MMF (average
% gap from the best known UFP-MMF solution).

UFP-MB/UFP-MMF gap

polska 0.46
nobel-us 0.94
atlanta 0.54
france 0.55
geant 0.59
germany 1.28

Unsplittable flows subject to r-MMF (UFP-r-MMF)

Adopting the relaxed max-min fairness r-MMF concept, the bottleneck condition is
relaxed by a factor 0 < r < 1. If the relaxed conditions yield an easier problem, we
could solve UFP-r-MMF (possibly with an increasing value of r), so to obtain better
bounds and approximate solutions which are closer to feasibility for the original
problem. We formulate UFP-r-MMF as a single level MILP as in (3.9)–(3.19),
replacing (3.17) with the relaxed Constraint (4.27). The problem appears to be
somewhat easier than the original UFP-MMF, as summarized in Table 6.18. The
fraction of instances solved to optimality is larger than for UFP-MMF (compare
with Table 6.8), but the problem appears to be still rather challenging, even for
r = 0.25. Note that we did not implement heuristics tailored specifically for UFP-
r-MMF.

The quality of the UFP-r-MMF bounds, compared to the optimal values of
UFP-MMF, as reported in Table 6.19, is rather good. However, the relaxation is
almost as hard as the original problem, and often we are unable to find the optimal
value within the time limit, so it has limited applicability.
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Table 6.18: Results of the branch-and-cut for UFP-r-MMF with r =
0.25, 0.5, 0.75.

r = 0.25 r = 0.5 r = 0.75
gap opt gap opt gap opt

polska 0.69 8/24 1.11 9/24 1.46 8/24
nobel-us 0.86 8/24 1.41 8/24 1.81 8/24
atlanta 0.40 11/16 0.79 9/16 1.27 7/16
france 0.74 15/24 0.84 15/24 1.28 14/24
geant 2.67 8/18 2.85 9/18 4.47 5/18
germany 6.90 4/18 6.52 4/18 7.62 3/18

Table 6.19: Quality of the bounds obtained with UFP-r-MMF for UFP-MMF.

UFP-r-MMF/UFP-MMF gap
r = 0.25 r = 0.5 r = 0.75

polska 1.68 1.54 1.39
nobel-us 1.99 1.90 1.66
atlanta 1.41 1.37 1.31
france 0.67 0.63 0.59
geant 0.64 0.63 0.64
germany 1.69 1.58 1.49
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6.6 Bringing together heuristics and dual bounds
The results presented so far have showed that the standalone heuristics can be
very effective, and the relaxations provide good dual bounds. Then, it is natural to
consider a practical approach to UFP-MMF, that consists in using the local search
heuristic to find good solutions, and solving a relaxation (specifically, UFP-MB) to
get a tight good bound, in many cases closing the gap.

The detailed results for this approach, which we consider to be the most efficient,
are reported in Table 6.20 in the following two pages. For the upper bounding
procedure, we report the best upper bound (UB) obtained within the time limit of
the branch-and-bound for UFP-MB, the time to optimality, the number of explored
nodes and the number of GCS cuts that have been generated. For the local search
heuristic, we report the best solution and the time where it has been found. In the
rightmost columns, we report the gap computed using the upper and lower bound.

Overall, such upper and lower bounding procedure allows for solving more than
40% of the instances to optimality, with an average gap around 0.65%. In 114 out
of 124 we are within 2% of the optimal value, and only 5 instances have a gap
larger than 3%.

Notice how the computing time required to solve UFP-MB is highly sensitive
to the size of the network and the cardinality of K. All polska and atlanta
instances are solved well within the time limit, except for 3 cases; on the other
hand, only five of the germany instances are solved to optimality. However, the
computing time required to reach optimality can vary significantly even among
instances of similar size. Take as an example france_3_4, which we have observed
to be one of the most consistently hard instances: despite the fact that it only has
15 origin-destination pairs in a network of 25 nodes, we were not able to close the
gap (even for UFP-MB) in any of our attempts. This is quite surprising, given that
the instance france_3_3 can be solved in a few seconds, and it only differs for the
composition of the set K (both instances have uniform arc capacities).

Table 6.20: Detailed results of the upper and lower bounding procedure for UFP-
MMF.

UFP-MB relaxation (3600 s) Local search (600 s)
inst_name k UB time nodes GCS cuts LB time best gap
polska_2_1 10 42.50 1.4 0 0 42.50 0.35 0.00
polska_2_2 10 39.50 0.4 0 4 39.50 1.63 0.00
polska_2_3 10 9.00 0.1 0 0 9.00 0.11 0.00
polska_2_4 15 9.00 1.6 90 121 9.00 13.35 0.00
polska_3_1 21 90.00 0.6 0 0 90.00 64.29 0.00
polska_3_2 21 86.50 4.6 185 165 86.50 52.11 0.00
polska_3_3 21 13.00 0.7 0 5 13.00 0.49 0.00
polska_3_4 21 10.00 0.9 0 0 10.00 79.18 0.00
polska_4_1 28 71.50 89.6 2583 662 71.50 3.55 0.00
polska_4_2 28 69.00 72.0 3750 503 68.88 2.54 0.18
polska_4_3 28 13.75 314.7 8412 849 13.75 326.51 0.00
polska_4_4 28 11.80 143.6 5562 850 11.80 288.71 0.00
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Table 6.20: Detailed results of the upper and lower bounding procedure for UFP-
MMF.

UFP-MB relaxation (3600 s) Local search (600 s)
inst_name k UB time nodes GCS cuts LB time best gap
polska_5_1 36 82.14 108.8 4986 522 81.86 360.66 0.34
polska_5_2 36 83.70 1216.0 35648 691 83.64 3.41 0.08
polska_5_3 36 15.56 758.8 23019 1271 15.41 356.00 0.98
polska_5_4 36 13.42 311.3 9510 840 13.18 503.54 1.78
polska_6_1 42 117.12 232.7 5900 922 116.47 89.49 0.56
polska_6_2 42 113.17 307.3 13249 963 112.25 229.64 0.82
polska_6_3 42 18.18 183.3 3685 1360 18.00 253.18 1.01
polska_6_4 42 14.39 25.6 554 868 14.25 92.97 0.94
polska_9_1 50 144.00 62.0 2607 636 141.88 64.35 1.49
polska_9_2 50 112.44 3600 75240 789 112.00 4.44 0.39
polska_9_3 50 21.80 795.0 11700 2099 21.59 101.79 0.98
polska_9_4 50 13.81 645.5 22050 1619 13.74 12.36 0.50
nobel-us_3_1 15 63.50 0.4 0 0 63.50 1.17 0.00
nobel-us_3_2 15 49.50 6.4 99 170 49.50 1.91 0.00
nobel-us_3_3 15 11.00 0.2 0 0 11.00 11.65 0.00
nobel-us_3_4 15 10.33 73.9 2935 611 10.33 5.16 0.00
nobel-us_4_1 21 75.17 100.7 4187 418 75.00 12.42 0.22
nobel-us_4_2 21 85.50 0.6 0 0 85.50 73.98 0.00
nobel-us_4_3 21 15.00 1.1 0 3 14.83 3.58 1.12
nobel-us_4_4 21 12.00 7.3 176 170 11.93 4.70 0.56
nobel-us_5_1 28 105.50 176.4 5151 854 105.25 3.27 0.24
nobel-us_5_2 28 100.30 472.1 11169 607 99.83 2.77 0.47
nobel-us_5_3 28 17.75 311.4 7684 1409 17.50 12.55 1.43
nobel-us_5_4 28 13.43 3080.2 53847 1805 13.33 73.79 0.71
nobel-us_6_1 36 91.50 97.7 813 826 90.78 13.64 0.80
nobel-us_6_2 36 116.28 3600 111828 1376 116.17 5.74 0.10
nobel-us_6_3 36 17.54 3600 29430 2639 16.71 542.16 4.99
nobel-us_6_4 36 14.58 3600 39043 2309 14.02 206.01 3.99
nobel-us_7_1 42 103.52 260.5 8573 1149 103.40 440.99 0.12
nobel-us_7_2 42 126.58 862.6 17815 1353 126.53 296.94 0.04
nobel-us_7_3 42 19.29 1629.4 38426 2027 19.24 288.31 0.28
nobel-us_7_4 42 15.58 3600 63263 2230 15.35 249.21 1.46
nobel-us_9_1 50 83.75 81.7 1540 1406 83.42 490.41 0.40
nobel-us_9_2 50 117.88 198.1 2860 989 117.81 75.99 0.05
nobel-us_9_3 50 18.03 3600 19876 3349 17.31 546.25 4.18
nobel-us_9_4 50 16.71 553.5 12137 2775 16.49 3.22 1.33
atlanta_1_1 12 48.50 0.7 0 3 48.50 1.97 0.00
atlanta_1_2 12 56.00 0.8 20 72 56.00 0.11 0.00
atlanta_1_3 12 9.00 0.5 0 1 9.00 0.10 0.00
atlanta_1_4 12 10.00 0.2 0 0 10.00 0.10 0.00
atlanta_2_1 20 62.50 0.5 0 0 62.50 24.31 0.00
atlanta_2_2 20 62.50 24.6 884 280 62.50 4.64 0.00
atlanta_2_3 20 12.00 0.7 0 5 12.00 79.06 0.00
atlanta_2_4 20 12.75 328.3 23036 444 12.67 5.10 0.66
atlanta_3_1 30 97.21 302.8 11624 575 96.08 115.07 1.18
atlanta_3_2 30 83.30 96.7 3607 397 83.00 203.25 0.36
atlanta_3_3 30 16.14 495.1 25474 783 16.02 45.58 0.74
atlanta_3_4 30 14.82 3600 111414 974 14.55 305.00 1.83
atlanta_4_1 42 75.67 144.1 4296 577 75.62 33.30 0.06
atlanta_4_2 42 119.50 2.0 0 1 119.20 17.64 0.25
atlanta_4_3 42 15.40 595.5 10210 1017 15.22 49.54 1.19
atlanta_4_4 42 16.88 3600 91109 922 16.65 107.44 1.37
france_2_1 10 52.50 0.8 0 1 52.50 0.30 0.00
france_2_2 10 48.50 2.8 0 9 48.50 0.17 0.00
france_2_3 10 9.00 0.9 0 8 9.00 0.15 0.00
france_2_4 10 10.00 0.1 0 0 10.00 0.18 0.00
france_3_1 15 56.50 0.9 0 0 56.50 0.29 0.00
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Table 6.20: Detailed results of the upper and lower bounding procedure for UFP-
MMF.

UFP-MB relaxation (3600 s) Local search (600 s)
inst_name k UB time nodes GCS cuts LB time best gap
france_3_2 15 67.00 1.0 0 0 67.00 0.46 0.00
france_3_3 15 15.00 0.2 0 0 15.00 0.23 0.00
france_3_4 15 12.86 3600 43626 1060 12.33 2.88 4.25
france_4_1 21 77.00 1.9 0 8 77.00 8.62 0.00
france_4_2 21 72.00 2.2 0 8 72.00 0.94 0.00
france_4_3 21 15.95 3600 23089 1151 15.75 145.12 1.27
france_4_4 21 15.90 3600 31542 1599 15.60 0.31 1.92
france_5_1 28 113.50 3.8 0 0 113.50 428.46 0.00
france_5_2 28 101.00 2.0 0 0 101.00 5.30 0.00
france_5_3 28 20.00 85.0 361 1153 20.00 8.11 0.00
france_5_4 28 17.89 3600 11872 2143 17.62 43.57 1.50
france_6_1 36 116.00 12.3 0 23 115.88 234.76 0.11
france_6_2 36 95.50 7.3 0 5 95.50 1.31 0.00
france_6_3 36 21.00 12.3 0 6 21.00 26.90 0.00
france_6_4 36 21.97 3170.7 22759 2389 21.91 469.18 0.28
france_7_1 45 131.41 3600 8093 2200 130.01 81.63 1.07
france_7_2 45 109.93 3600 12284 2862 109.29 105.31 0.59
france_7_3 45 25.42 3600 10920 3914 24.62 242.04 3.23
france_7_4 45 23.95 3600 8309 3574 23.87 169.28 0.37
geant_4_1 12 9.00 0.6 0 0 9.00 0.36 0.00
geant_4_2 12 35.60 0.6 0 1 35.60 0.38 0.00
geant_4_3 12 42.00 3600 11967 1457 41.60 574.35 0.96
geant_5_1 20 11.00 91.2 1000 1235 11.00 28.20 0.00
geant_5_2 20 50.19 3600 12487 1970 49.40 209.18 1.60
geant_5_3 20 52.80 4.6 0 0 52.80 42.45 0.00
geant_6_1 30 14.00 6.3 0 0 14.00 281.74 0.00
geant_6_2 30 74.20 3600 10738 2725 72.71 255.56 2.04
geant_6_3 30 62.20 14.6 0 5 62.11 247.04 0.14
geant_7_1 42 19.00 17.4 0 2 19.00 548.51 0.00
geant_7_2 42 99.20 3600 6845 3034 98.66 336.20 0.55
geant_7_3 42 84.60 1200.2 7000 2494 84.52 58.86 0.09
geant_8_1 56 25.00 3600 7030 6189 24.78 154.98 0.89
geant_8_2 56 123.60 2402.4 9000 3540 123.20 179.88 0.32
geant_8_3 56 111.62 3600 6954 5445 109.31 541.09 2.11
geant_9_1 72 27.00 3600 5504 6566 26.78 471.01 0.81
geant_9_2 72 127.60 1685.5 3000 3951 127.40 349.52 0.16
geant_9_3 72 117.00 3600 4812 4897 113.99 601.65 2.64
germany_5_1 10 8.00 2.2 0 0 8.00 0.36 0.00
germany_5_2 10 31.80 4.3 0 5 31.80 0.76 0.00
germany_5_3 10 42.40 19.6 0 19 42.40 31.14 0.00
germany_6_1 15 10.86 3600 706 4913 10.50 0.63 3.40
germany_6_2 15 38.80 27.6 0 25 38.80 1.73 0.00
germany_6_3 15 54.80 3600 1741 5505 54.20 22.39 1.12
germany_7_1 20 11.84 3600 4941 12707 11.62 21.63 1.87
germany_7_2 20 43.80 40.4 0 75 43.80 4.80 0.00
germany_7_3 20 60.20 3600 1424 6305 59.94 449.60 0.43
germany_8_1 26 14.88 3600 1 2303 14.73 476.34 1.04
germany_8_2 26 56.20 3600 6 1396 55.80 200.00 0.72
germany_8_3 26 70.80 3600 1 1845 70.08 488.07 1.03
germany_9_1 34 17.88 3600 60 3624 17.69 66.31 1.05
germany_9_2 34 65.60 3600 1 2206 65.47 10.95 0.20
germany_9_3 34 80.66 3600 1 1997 78.15 15.88 3.22
germany_10_1 41 18.88 3600 1 1860 18.71 597.41 0.90
germany_10_2 41 70.00 3600 1 1585 69.60 275.18 0.57
germany_10_3 41 88.40 3600 1 1779 86.73 66.79 1.92
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6.7 The impact of fair flow allocation
Let us consider the optimal solutions of UFP-MMF we have obtained. We can now
answer a crucial question: how much of the maximal achievable throughput on a
network can be reached, if fairness is imposed?

Proposition 2.14, on the price of fairness of UFP-MMF, states that having a
fair flow allocation over the chosen routing paths can affect the efficiency of the
solution in a significant way: with 20 origin-destination pairs, it is possible to lose
even more than 80% of the efficiency with respect to the most efficient (utilitarian)
solution. (i.e., the optimal solution of UFP). Despite this theoretical result, our
experiments show that, on realistic networks, the total throughput that can be
achieved under fair flow allocation is only marginally smaller with respect to the
case where the upper-level decision maker can also decide on the flow allocations in
the network (UFP). Table 6.21 shows how much we lose with respect to UFP when
the flows are allocated fairly. We compare the optimal value of bilevel problems
with fairness at the lower level, with the optimal throughput of the UFP solution
as the baseline (considered with value 100).

Table 6.21: Optimal values obtained with fair flow allocation at the lower level,
compared to the UFP optimal values on the same instances, where OPTUFP =
100.

UFP-MB UFP-r-MMF UFP-MMF

r = 0.25 r = 0.5 r = 0.75 (r = 1)

polska 98.59 99.16 98.60 98.12 97.91
nobel-us 98.71 99.24 98.76 98.36 97.95
atlanta 99.16 99.63 99.40 98.84 98.67
france 99.43 99.47 99.53 98.97 98.91
geant 99.75 99.65 99.72 98.55 97.62
germany 98.46 99.61 98.89 98.80 98.58

The throughput that could be obtained in a given network is indeed larger
if MMF fairness were not imposed, but only by a few percent points: the total
throughput of UFP-MMF is, on average, less than 2% from the maximum achiev-
able throughput on the network. The values obtained with the other fairness
relaxations are even closer to UFP. In other words, our computational experiments
suggest that, in practice, one incurs a small price of fairness. This is good news
for the network operator: the message is that, even if fairness is imposed by the
network protocols, by solving our bilevel problem it is possible to achieve very effi-
cient solutions — almost as efficient as if fairness were not imposed. We will show
that, even if the total throughput value is similar, the solutions (i.e., routing paths
and flow allocations) for UFP and UFP-fair are not necessarily similar.
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6.7.1 Relaxation solutions in networks subject to MMF

Since the optimal objective values for UFP, UFP-MMF and the other relaxations
of UFP-MMF are so close to each other, a natural question is whether the solutions
(i.e., the optimal routing paths) to the relaxed problems can be used successfully in
the MMF setting. If this were the case, we could simply take the optimal routing
paths obtained, e.g., with UFP, and use them in a network where flow is allocated
according to MMF.

Let us verify, then, how the routing paths obtained for a relaxation of UFP-
MMF behave in a network subject to max-min fair flow allocation. It is sufficient
to apply the water-filling algorithm to these optimal routing paths, and we can
compare the resulting throughput with the optimal value of UFP-MMF (or the
tightest known upper bound). Table 6.22 summarizes this comparison.

Table 6.22: Gap with respect to the optimal UFP-MMF value (or the tightest
known upper bound) when MMF flow allocations are recomputed over the opti-
mal routing paths found by solving the other problems.

UFP UFP-MB UFP-r-MMF

r = 0.25 r = 0.5 r = 0.75

polska 16.28 3.14 1.48 0.99 0.92
nobel-us 16.50 3.21 2.04 1.45 1.43
atlanta 17.21 2.43 2.22 1.11 0.69
france 10.43 1.66 1.43 1.32 1.44
geant 20.64 3.80 6.22 4.61 5.06
germany 16.04 7.47 9.56 7.43 7.73

The optimal routing paths for UFP are far from optimal if the flow allocation
is imposed to be max-min fair. Indeed, when the flow is allocated fairly over those
paths, the solution value is often more than 20% off from the UFP-MMF optimal
value, and sometimes even more than 50% far.

The solutions for the other relaxations prove to be better. The routing paths
obtained with UFP-MB are quite good also under MMF. This is also true for
the solutions to UFP-r-MMF, which get closer to the UFP-MMF optima when
r is increased. Notice that the solutions obtained with r = 0.75 are sometimes
worse that those with smaller values of r because the problems is harder and fewer
instances are solved to optimality (see Table 6.18), while, in general, we would
expect the relaxation with larger r to provide solutions which are closer to the
optimal solutions for UFP-MMF.

In conclusion, it is worth stressing the fact that the solutions of UFP, i.e.,
maximizing the throughput not considering fairness, are of poor quality in an
MMF network: this provides a strong practical motivation for further work on
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bilevel problems subject to fair flow allocation, since taking into account fairness
in the optimization is crucial for the quality of the solutions.

6.7.2 Structure of the solutions
To obtain more insight on the structure of the solutions, let us focus on the flow
allocations in the UFP and UFP-MMF optimal solutions. Even if the values of
the UFP optimal solutions are quite close to those of UFP-MMF, their structure
is significantly different. In Figure 6.3 we show the distribution of the flow allo-
cations in the best known solutions for UFP and UFP-MMF, as a histogram of
flow allocation values expressed as percentage of the maximal allocation on each
instance, i.e., we normalize the optimal flow allocation vector for each instance as:

φ% := 100
φ

maxi∈K{φi}
.

As an example, the second leftmost bar corresponds to the fraction of OD pairs, over
all the optimal solutions, whose flow allocation is larger than 0 and not larger than
10% of the maximal allocation in the solution where they belong. UFP solutions
almost have a bimodal distribution, with the majority of the allocations either at 0
or at the maximum, while UFP-MMF solutions have a more balanced distribution,
although the sub-maximal allocations tend to be less than 50% of the largest.
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Figure 6.3: Distribution of the flow allocations for all the origin-destination pairs
in the best found (optimal) UFP solution (red) and UFP-MMF solution (blue).

We have actually observed that on all the instances5, in the optimal solutions
of UFP, a subset of the origin-destination pairs are allocated a flow of value 0, and
Table 6.23 reports such fraction. Then, in a UFP solution the pairs (s, t) with
φst = 0 are, in a way, irrelevant: they can be assigned an arbitrary routing path,
since it does not affect the objective function in any way.

5Except those where all the flows can be routed via edge-disjoint paths.
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This analysis indicates that the optimal routing paths for UFP can be very
different from the optimal paths of UFP-MMF, as the results in the previous sub-
section also suggested.

Table 6.23: Percentage of OD pairs with φst = 0 in the optimal solutions of UFP.

polska 41.18%
nobel-us 33.83%
atlanta 42.72%
france 21.54%
geant 28.96%
germany 19.55%

6.8 Concluding remarks
In the first part of the thesis, the maximum-throughput unsplittable flow problem
subject to max-min fair flow allocation (UFP-MMF) has been studied. After dis-
cussing theoretical properties of the problem, we have described how the problem
can be cast as a single-level MILP, and proposed several solution approaches.

We have investigated two exact methods: a branch-and-price algorithm, where
path variables are dynamically generated, and a branch-and-cut algorithm, based
on the separation of generalized cutset inequalities. The computational exper-
iments show that tightening the MILP formulation with valid inequalities, and
including rounding heuristics in the branch-and-bound, helps in improving the
convergence of the MIP-based algorithms.

Since several instances (due to the size of the network or the number of origin-
destination pairs) are very challenging for exact approaches, we have proposed
a local search heuristic with variable neighborhood and tabu list that achieves
solutions of very good quality (on average, below 0.65% from the optimal value)
within 10 minutes.

Several relaxations of UFP-MMF have also been investigated. Solving the re-
laxation where we replace the MMF criterion with the max-bottleneck (MB) one
gives very good dual bounds, that are sufficient to completely close the MIP gap
for almost half the instances, exceeding 2% in only 10 instances.
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Part II

Operational planning of
energy cogeneration systems
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CHAPTER7
Short-term operational planning of

cogeneration systems

The second part of the thesis addresses planning problems for energy cogeneration
systems, that involve the production of thermal and electrical energy. In this
chapter we provide the motivation for this work, introduce the problem of short-
term operational planning of cogeneration systems, and include a brief review of
previous work on the subject and its relationship with well-known related problems.

7.1 Motivation
Combined Heat and Power (CHP) plants, also called cogeneration power plants,
are energy systems composed of a network of units that convert primary energy
(e.g., fossil fuels) into electricity and useful heat so as to meet the demand of
electrical power and heat at certain temperature levels of a set of users. As in a
cascade process, primary energy is converted into electrical power through a ther-
modynamic cycle, and the heat discharged by the cycle is used to satisfy the users’
heat demand. Thanks to the improved integration of these heat flows, CHP plants
achieve remarkable savings in primary energy and in CO2 emissions with respect to
non-cogeneration plants at both large [Boy10] and small scales [Kol11]. Therefore,
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several European and North American countries have recently adopted incentive
policies to strongly favor CHP plants, as well as Combined Cooling Heat and Power
(CCHP) plants, that also cogenerate refrigeration power. As an example, in 2012
the White House issued an executive order on accelerating investment in industrial
energy efficiency [EO12]:

Instead of burning fuel in an on site boiler to produce thermal energy
and also purchasing electricity from the grid, a manufacturing facility
can use a CHP system to provide both types of energy in one energy
efficient step. Accelerating these investments in our Nation’s factories
can improve the competitiveness of United States manufacturing, lower
energy costs, free up future capital for businesses to invest, reduce air
pollution, and create jobs.

Due to its practical relevance, the optimization of cogeneration systems has re-
ceived a growing attention during the last decade. The problems addressed range
from long and medium-term strategical and tactical planning, to short-term oper-
ational planning of the energy plants.

7.2 Operational planning of cogeneration systems
A cogeneration system is characterized by the presence of units that generate more
than one commodity at the same time. A system involves:

• (C)CHP cogeneration units, that simultaneously generate electrical and ther-
mal power,

• generation units, that generate only one commodity (e.g., either electrical or
thermal power),

• and heat storage tanks.

The basic version of the short-term cogeneration system operational planning
problem we consider is defined as follows. Given

- a cogeneration system, including (C)CHP cogeneration units, with possibly
other generation units, and heat storage tanks with fixed capacity,

- time-dependent demands of thermal, cooling and electrical power,

- time-dependent fuel price and fixed costs,

- time-dependent ambient temperatures, which implies time-dependent effi-
ciencies,
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Figure 7.1: Example of CCHP network connecting the (co)generation units with
the storage tanks, the electric grid and the users. Further details will be discussed
in Chapter 10, devoted to a real-world application.

determine, for each time period t ∈ T , the schedule that minimizes the total
operating costs while satisfying the given demands.

In addition, electrical energy can be sold/purchased to/from the power grid:
in deregulated markets, the price of electrical energy can vary hourly. Since the
different cogeneration units (e.g., multiple CHP gas turbines) can be independently
controlled (e.g., switched on/off) and the performance functions of many cogenera-
tion units might be nonlinear, if they incur significant efficiency decrease at partial
loads, the short-term operational planning of a cogeneration system can be seen as
a mixed-integer nonlinear optimization problem.

We characterize each unit with a linear or nonlinear “performance function”,
that maps input variables (e.g., fuel or electricity) to output variables (the gener-
ated commodities, e.g., thermal and/or electrical power).

The unit performance functions can be time-varying, since the ambient temper-
ature affects performance. We also account for the start-up phase of some units,
that may incur a significant energy penalty due to warm-up costs. Heat can be
stored in tanks, that may be subject to losses, and higher-temperature heat can
be converted into lower-temperature heat. Heat in excess of the demand can be
dissipated without additional costs.

Additional logical constraints, with a strong combinatorial aspect, can also be
included, typically linking together different consecutive time periods. The most
common are:

• Minimum/maximum up/down-time: a unit has to remain on/off for at least/most
a given number of (consecutive) time periods.
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Figure 7.2: Useful effect (electrical and thermal power) of a cogeneration unit as
a function of consumed fuel. Note that the concavity of the curves is different:
at larger loads the thermal efficiency increases, while the electrical efficiency
decreases.

• Ramp-up and ramp-down: the increment and decrement of the generation of
a unit from a time period to another, is bounded by a constant or, sometimes,
it has to follow a specific ramping profile.

• Maximum numbers of start-ups: the number of start-ups can be limited over
a specific time horizon (also implicitly imposed by minimum up/down-time
constraints).

7.3 Previous and related work
The problem of planning the operations of combined heat and power systems has
received a lot of attention in the energy and power systems communities, as well
as in the operations research one. The literature on the subject is vast and rather
heterogeneous.

In planning the operations of a system, we refer to computing the optimal pro-
duction schedule of the system within a short-term horizon (from a few hours to a
few weeks). Typically, the composition of the system is given, and the aim is to op-
erate the units minimizing the overall costs, while satisfying fine-grained technical
constraints and users’ demands. The optimization problems are often considered
to be deterministic, since short-term forecasts tend to be rather accurate, and due
to their stochastic counterparts being harder to solve. In recent years, however,
the robust optimization approach has received considerable attention, as it allows
one to consider uncertainties with a more reasonable tradeoff in computational
complexity.
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As opposed to the short-term (purely operational) planning, the medium and
long-term problems (from months to years) may involve also tactical/strategical
decisions on fuel purchase, failure risks, investments on new cogeneration units
and the management of polluting emissions. In these longer-term horizons, it is
essential to greatly simplify the technical constraints and consider the problem
at a higher level. In this thesis, we will focus mainly on the short-term setting.
However, some of the considerations can also be applied to a long-term scenario.

From the point of view of the cogeneration system modeling, two main ap-
proaches are adopted in the literature. We must point out that there often is no
clear cut distinction, and a combination of the two approaches can be used.

In approaches based on thermodynamic first principles, the system is decom-
posed into small components whose behavior can be modeled accurately by impos-
ing mass/energy balance equations. This requires a rather profound knowledge of
the units comprising the cogeneration systems, and often involves the introduction
of complex (possibly highly nonlinear) technical constraints. Examples are [DH12]
and [MGPA12], where the behavior of each component is described starting from
specific thermodynamic relations. In both articles, the nonlinearity in the model
are approximated via piecewise linear functions.

In data-driven, or black-box, approaches, the behavior of the energy system is
described with models obtained from experimental data or from data given by the
manufacturer. This is a rather common approach that gives considerable flexibility
with respect to the level of accuracy in the description of the system. It is possible
to consider an explicit approximation of the performance function of the units in
the system, see, e.g., [ZLL+13] and [BTM+14], that consider linear and nonlinear
models. An alternative is to consider only the space of the output variables (heat
and electrical power), projecting out the input variables (fuel, consumed electric-
ity), either considering linear costs [AM03], or a convex-hull representation in the
power-heat-cost space, as done in [LH03] and [CKPT12].

With regard to the mathematical techniques that are used to solve the plan-
ning problems, a variety of models and methods have been proposed over the
years. A broad survey of related research (up to 2006) is [SP08], which contains a
review of different formulations and solution methods, ranging from AI techniques,
evolutionary or genetic algorithms, to dynamic programming and mixed-integer
programming.

Our aim is to study the short-term operation planning problem adopting math-
ematical programming techniques. If the discrete unit operation modes are taken
into account, one typically has to deal with mixed-integer programming formula-
tions – possibly nonlinear, depending on the performance functions and the tech-
nical constraints that are included.

One of the first complete Mixed-Integer Linear Programming (MILP) formula-
tions for the operational planning of cogeneration systems can be found in Seeger
and Verstege [SV91]. Their model includes thermal storage with losses, minimum
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up and down-time constraints and start-up cost. The units are described by means
of piecewise linear performance functions. Gardner and Scott Rogers in [GS97]
discuss a MILP reformulation for the variant with no energy storage.

In [Dot97, Dot01, DHR99], Dotzauer studies a detailed MINLP model with
quadratic costs, which includes thermal storage and explicit temperature/mass
balance equations, and proposes approaches based on Lagrangian decomposition.
Although his formulation is rather comprehensive, it does not account for electricity
demands, and all the generated power is sold to the grid.

A prolific stream of research is the one by Rong, Lahdelma, Makkonen and
coauthors, who choose to represent the feasible region as a convex combination of
a set of working points. In their early work, they consider a Linear Programming
model, where the on/off status of the units is relaxed and thermal storage is not in-
cluded. For this variant, they propose an efficient revised simplex method [LH03].
Their model is extended to account for non-convex feasible regions (e.g., on/off
status or unit modes) in [RL07a, RLG09], where they apply MILP-based heuris-
tics, and in [RL07b], where a convex-envelope branch-and-bound is developed. In
all these articles, thermal storage is neglected. In [RHL08], they also account for
thermal storage (with losses) and refrigeration power, while the on/off status vari-
ables are relaxed, and propose a fast Lagrangian decomposition algorithm to solve
the resulting large-scale LPs.

Among other related work, a MILP-based heuristic where the thermal and elec-
trical parts are solved sequentially is proposed in [SFT+05]. Mitra and Grossman
in [MGPA12] describe a generalized MILP model for units with more than two
operation modes, obtained as a piecewise linear approximation of nonlinear units.
Jüdes et al. in [JVT09] propose a MINLP model that includes both the design and
the operation of a system, and an ad-hoc branch-and-cut algorithm. In [BTM+14],
a complete MINLP formulation is proposed, and a piecewise linear approximation
is used to solve it as an MILP.

It is important to observe that short-term operational planning of cogeneration
systems can be seen as a combination of two well-known problems, whose literature
is worthwhile to investigate.

On the one hand, the discrete on/off status of the cogeneration unit, the logical
constraints (such as ramp-up/down rates, minimum up/down-time, etc.), and the
production/demand dynamics are typical of the problem usually referred to as Unit
Commitment (UC). On the other hand, the management of the storage and of the
production level can also be seen as a production planning, or lot-sizing, problem.

7.3.1 Unit commitment
The operational planning of cogeneration systems can be considered as a variant
of what is known in the power systems community as the Unit Commitment (UC)
problem [Pad04]. UC consists of determining when to start up and shut down the
power plants (unit commitment), and how much each committed unit should gen-
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erate to meet the demand (economic dispatch), while minimizing a cost function
which is typically linear or quadratic with respect of the production level. Success-
ful approaches for UC include dynamic programming for simple subproblems (such
as the single-unit variants, see e.g. [FG06]), and Lagrangian methods for more com-
plex, large-scale problems [FGL11, RLL08], while, in recent years, mathematical
programming is becoming the method of choice [CA06, FGL09] thanks to the great
advances in mixed-integer programming theory and the flexibility it provides by
using off-the-shelf MIP solvers as black-box tools.

Let us remark the main peculiarities of the cogeneration system planning prob-
lem with respect to UC. Compared to classic unit commitment problems, a CCHP
system includes not only the generation of electrical power, but also of other com-
modities, such as thermal power (at different temperature levels) and refrigeration
power. Cogeneration units produce both electrical power and thermal power si-
multaneously. Therefore, the cost cannot be considered simply as a quadratic
function of the production level, as the commodities are interdependent in a non-
trivial way. Their interdependence is important also because commodities can be
converted (with some caveats): high-temperature heat can be easily converted to
low-temperature heat (not the opposite), electricity can be used to generate ther-
mal power via a heat pump, and so on.

A crucial feature of our problem is also the possibility of storing thermal energy
from one time period to the following, which is not typically possible for electrical
energy. We also remark that the thermal storage for each commodity is global, in
the sense that it can be accessed by multiple units. The presence of the storage
constraints, that couple the time periods and the units, make many approaches for
UC not easily extended to our case.

7.3.2 Production planning
Production planning is a fundamental problem in operations research and manage-
ment science. At the core of production planning is the so-called lot-sizing problem.
Given an inventory and a sequence of demands for an item q over a finite planning
horizon of n discrete periods, the deterministic lot-sizing problem consists of find-
ing the optimal production sequence for q. For each time period t, the production
incurs a fixed cost Kt and in costs that are proportional to the production level qt.
The amount produced in period t can be used to satisfy demands in that period or
in the following ones, thanks to an inventory, which may have holding costs. The
aim is to find a production plan that minimizes the overall production and holding
costs, satisfying the demands.

Several variants of the problem exist and have been studied. For an exten-
sive account on deterministic production planning problems and, in particular,
on mixed-integer programming approaches, see the excellent book by Pochet and
Wolsey [PW06], and the references therein. The basic uncapacitated lot-sizing
model is introduced for the first time by Wagner and Whitin in [WW58], that
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propose a O(n2) dynamic programming algorithm, later improved to O(n logn)
in [WVHK92]. In [BVRW84b] the authors prove that the (l, S) inequalities fully
describe its convex hull. The problem with production upper bounds, usually called
capacitated lot-sizing, is in generalNP-hard [BY82], but can be solved via dynamic
programming in O(n3) if the capacity is constant [VHW96]. The uncapacitated
lot-sizing problem with inventory bounds was shown to be polynomially solvable
by Love [Lov73], and a O(n2) algorithm is described in [AK08]. In [BW01], mixed-
integer programming formulations for general lot-sizing problems are discussed.
Strong formulations and valid inequalities for the multi-item capacitated lot-sizing
are proposed in [BVRW84a].

The core structure of the operation planning problem for cogeneration systems
can be seen as a multi-item, multi-machine capacitated lot-sizing problem with
bounded inventory and lower bounds on the production. Two main peculiarities
with respect to a classic production planning problem are the strong interdepen-
dence between the production items and the presence of nonlinear terms. Moreover,
energy systems planning may involve several additional constraints, which are com-
mon in UC problems but are not usually addressed in the literature on lot-sizing.
However, due also to new possibilities of electrical power storage that are emerging,
we envisage that more and more often the operation planning of energy systems
will need to be addressed as a production planning with bounded inventory, and it
is important to investigate exact optimization methods apt for the task.
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In this chapter, we discuss approaches for the operational planning of cogeneration
systems based on mixed-integer programming. In particular, we study the building
blocks of the problem from a computational and polyhedral point of view. Starting
from known results for general production planning, we attempt to extend them
to account for the specificities of our problem. We consider both non-linear and
linear variants of the single-unit version, and we discuss polynomial algorithms
(when possible), reformulations, and ways to derive valid inequalities. Note that
this is meant to be a first step in the investigation of this interesting variant, and
it does not contain extensive computational results.

Terminology and notation remarks

From now on, adopting the terminology used in the production planning literature,
we will sometimes refer to the (co)generation units as machines, to the commodities
as items and to the (heat) storage as inventory or stock. Moreover, we will speak
interchangeably of generation or production and inventory or holding costs. We
denote by n the cardinality of T = {1, . . . , n}, and also adopt the following notation

119



Chapter 8. Mixed-integer programming approaches for operational planning
of cogeneration systems

to indicate the sum of a parameter dt over an interval [k, l]:

dkl =
l∑

i=k
dt.

8.1 Single-item generation unit
Let us begin with a system containing one generation unit (single-machine problem)
that generates a single commodity. We assume that the item can be stored between
consecutive periods, e.g., it is some type of thermal energy (cooling or high/low
temperature heat). The quantity of thermal energy exceeding the demand can be
dissipated with no additional costs.

Let ut be the inventory in stock at the end of time period t, ft the input quantity
that drives the production (e.g., fuel), qt the amount of the generated item, st the
amount that is dissipated, zt the binary variable that has value 1 if the machine is
active in period t, and 0 otherwise, st the dissipated quantity of item q, and gt(·)
the nonlinear, nondecreasing performance function that maps the input variable ft
to qt. Let us denote by dt the demand to be satisfied in period t. A mixed-integer
nonlinear programming formulation is as follows:

min
∑
t∈T

(ctft +Ktzt) (8.1)

ut + dt = ut−1 + qt − st t ∈ T (8.2)
ut ≤ U t ∈ T (8.3)
ztF

min
t ≤ ft ≤ ztFmaxt t ∈ T (8.4)

qt = ztgt(ft) t ∈ T (8.5)
zt ∈ {0, 1} t ∈ T (8.6)
qt, st, ft, ut ≥ 0 t ∈ T (8.7)

Assume that u0 = 0 = un. The objective coefficient ct > 0 is the time-varying cost
of the input variable ft, while Kt represents the fixed cost of generation in time t.
U is the maximum storage capacity, and Fmint , Fmaxt the lower and upper bound
on ft. Notice that all the parameters are time-dependent, except for the inventory
upper bound U , which is constant.

Constraints (8.2) are the balance equations that model the inventory and de-
mand dynamics. Constraints (8.4) impose that the consumed fuel lies within the
operating range of the generation unit, if and only if the unit is on (zt = 1).
Constraints (8.5) link the input variables ft to the output variable qt via the per-
formance function if zt = 1. The binary variable in Constraints (8.5) is necessary
if gt(0) 6= 0. Since ft = 0 if and only if zt = 0, it is also possible to rewrite (8.5)
with a big-M term, obtaining

qt = gt(ft)− (1− zt)gt(0),
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where the rightmost term cancels out if zt = 1.
Observe that the nonnegative slack variable st in Constraint (8.2) accounts for

the possibility of dissipating part of the generated energy (without any penalty
cost), which is one of the peculiarities of the problem. We assume that we can
dissipate energy only in the same period where it is generated, thus st ≤ qt. This
assumption can be made without loss of generality when the dissipation does not
have a cost or its cost is constant over time.

If the functions gt are nondecreasing and the costs ct are positive for any t ∈ T ,
all the variables st are going to be 0 in most cases, since, in an optimal solution,
there is no incentive to generate more than is strictly necessary. Indeed, a variable
st can be positive only if the quantity that can be “absorbed” by the system (either
via storage or item demand) is smaller than the technical minimum. This might
happen if ut−1 + qt − dt > U , violating the stock upper bound, and neither qt
nor ut−1 can be decreased. Only in such a case, it may be necessary to generate
qt = gt(Fmint ), and dissipate the rest through st.

Proposition 8.1. Assume ct > 0, gt nondecreasing and st ≤ qt ∀t ∈ T . For any
t ∈ T it holds that:

st ≤ gt(Fmint ) ∀t ∈ T. (8.8)

Moreover, in an optimal solution to (8.1)–(8.7), s can have a nonzero element only
if there is a k ∈ T such that gk(Fmink ) > dk.

Proof. Consider an optimal solution. If st > 0, then ut−1 + qt > ut + dt and qt > 0
from the assumption that st ≤ qt. If qt > gt(Fmint ), qt could be decreased, yielding
a cheaper solution. Hence qt = gt(Fmint ), and (8.8) follows.

Assume w.l.o.g. k is the only k ∈ T such that sk = ε > 0, and qk = gk(Fmink ).
Let us consider the solution obtained moving the nonzero dissipation from k to
the next period, so that sk = 0 and sk+1 = ε, by increasing uk of the quantity ε.
Even in period k + 1, it must hold that qk+1 = gk+1(Fmink+1 ), otherwise one could
decrease it obtaining a cheaper solution. Then, we can move the ε dissipation to
k+2, and so on, until a period k′ ≥ k is found where qk′ = gk′(Fmink′ ) and uk′ = U ,
so that we cannot move any further. For such k′, since sk′ = ε, uk′−1 + qk′ >

uk′ + dk′ , therefore gk′(Fmink′ ) > dk′ +U −uk′−1 ≥ dk′ . The same argument can be
applied backwards, up to a k′ ≤ k such that uk′−1 = 0, and yielding equivalently
gk′(Fmink′ ) > dk′ + uk′ − 0 ≥ dk′ .

Observe that, if the variables st do not appear in other constraints1, they can
be removed, obtaining a formulation where the balance equation is replaced by the
inequality:

ut−1 + qt ≥ dt + ut t ∈ T. (8.9)

1This might happen when there are efficiency/environmental constraints.
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In analogy to the formulations usually considered for lot-sizing and unit com-
mitment problems, it is possible to project out the ft variables and work only in
the space of the production variables qt, moving the nonlinearity to the objective
function. Let Qmint := gt(Fmint ) and Qmaxt := gt(Fmaxt ), let us assume that the
functions gt are invertible in [Fmint , Fmaxt ] and, for simplicity, that gt(0) = 0 ∀t ∈ T .
By defining φt(·) = ctg

−1
t (·), we can write:

min
∑
t∈T

φt(qt) +Ktzt (8.10)

ut + dt = ut−1 + qt − st t ∈ T
ut ≤ U t ∈ T
ztQ

min
t ≤ qt ≤ ztQmaxt t ∈ T

zt ∈ {0, 1} t ∈ T
qt, st, ut ≥ 0 t ∈ T (8.11)

All the constraints are linear. Thus, if the functions φt are convex, the problem is a
so-called convex mixed-integer nonlinear program. In this case, tighter formulations
that are known for quadratic Unit Commitment problems can be used, for instance
exploiting perspective formulations cuts [GL10, FGL09]. On the other hand, if the
functions φt are concave, we will see in Section 8.1.3 that the variant with constant-
capacity production bounds can be solved via a dynamic programming algorithm.

Unit Commitment-like constraints

In addition to the constraints related to the balance of the generated quantities,
other technical constraints are often included to model the behavior and the lim-
itations of the cogeneration units. Let us introduce, for each t ∈ T , the binary
start-up variable δt, that takes value 1 if zt−1 = 0 and zt = 1, indicating the
time periods where the unit is started. We model them with the following linear
constraints:

δt ≥ zt − zt−1 t ∈ T (8.12)
δt ≤ zt t ∈ T (8.13)
δt ≤ 1− zt−1 t ∈ T (8.14)
δt ∈ {0, 1} t ∈ T (8.15)

Then, common Unit Commitment-like logical constraints are the following:

Lδt ≤
∑

i∈[t,t+L−1]

zt t ∈ T (min uptime)

∑
t∈T

δt ≤ ∆̄ (max start-ups)

qt+k ≤ δtMk t ∈ T, k ∈ [0,K] (ramp-up profile)
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where L is the minimum uptime, ∆ the maximum start-ups, and Mk for k =
0, . . . ,K is the bound on the production level at the k-th period after a start-
up. Similarly, one can also model the shut-down of a machine and the mini-
mum/maximum downtime constraints.

8.1.1 Linear variant

In practice, it is sometimes preferable to work with linear approximations of the
real performance functions2. The resulting problem is naturally simpler to solve,
and the loss of accuracy may be acceptable, if the nonlinearities are mild or if one
is dealing with longer-term planning problems.

Let gt be a linear function for all t, that is, gt(ft) = αtft. A MILP formulation
reads:

min
∑
t∈T

ctft +Ktzt

ut + dt = ut−1 + qt − st t ∈ T
ut ≤ U t ∈ T
ztF

min
t ≤ ft ≤ ztFmaxt t ∈ T

qt = αtft t ∈ T
zt ∈ {0, 1} t ∈ T
qt, st, ut ≥ 0 t ∈ T.

Let us project out ft applying the substitution ft = qt

αt
. The new objective

function reads:
min

∑
t∈T

ct
qt
αt

+Ktzt,

that can be rewritten defining c′t := ct

αt
, so that without loss of generality we can

focus on the case with αt = 1. Then, let Qmint := αtF
min
t and Qmaxt := αtF

max
t .

The formulation in the space of the production variables qt is as follows:

min
∑
t∈T

c′tqt +Ktzt (8.16)

ut + dt = ut−1 + qt − st t ∈ T (8.17)
ut ≤ U t ∈ T (8.18)
ztQ

min
t ≤ qt ≤ ztQmaxt t ∈ T (8.19)

zt ∈ {0, 1} t ∈ T (8.20)
qt, st, ut ≥ 0 t ∈ T. (8.21)

2Of course, even the nonlinear performance functions can only be an approximation of the real
behavior of a unit.
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This formulation is essentially identical to the standard model for the single-item
capacitated lot-sizing problem with inventory upper bound U and production lower
bounds Qmint , although there is the possibility of dissipating item qt via the slack
variable st. This allows us to adapt valid inequalities and extended formulations
for standard lot-sizing problems.

8.1.2 An extended formulation and valid inequalities
A classic facility-location-based reformulation for the single-item lot-sizing prob-
lem [PW06] can be obtained considering the amount generated in each k ≤ t to
satisfy the demand in period t, that we indicate with the nonnegative variable otk.
The extended formulation, adapted to our problem, reads:

min
∑
t∈T

ctqt +Ktzt (8.22)

ut + dt = ut−1 + qt − st t ∈ T (8.23)
t∑

k=1
otk = dt t ∈ T (8.24)

n∑
t=k

otk = qk − sk k ∈ T (8.25)

otk ≤ dtzk k, t ∈ T, k ≤ t (8.26)
ut ≤ U t ∈ T (8.27)
ztQ

min
t ≤ qt ≤ ztQmaxt t ∈ T (8.28)

zt ∈ {0, 1} t ∈ T (8.29)
qt, st, ut ≥ 0 t ∈ T, (8.30)

where the balance equation (8.23) can also be omitted.
Several valid inequalities can also be derived. Consider an interval [k, t]. Clearly,

if no generation occurs in the interval, all the demand must fulfilled by the inven-
tory. It follows that:

dkt ≤M
t∑
i=k

zi + U,

which is equivalent to imposing for each interval (k, t) such that dkt > U :
t∑
i=k

zi ≥ 1. (8.31)

Similarly, it is easy to see that the amount which is generated and not dissipated,
i.e., qt − st, cannot be greater than the sum of the demand in the current period
and the capacity of the inventory:

qt − st ≤ (dt + U)zt. (8.32)
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The (l, S) inequalities are a class of valid inequalities for the lot-sizing problem
first described in [BVRW84b]. For the uncapacitated lot-sizing, they suffice to
describe the convex hull of the polyhedron. They can be easily extended to the
case we consider as follows:

Proposition 8.2. Let 1 ≤ l ≤ n, L = {1, . . . , l} and S ⊆ L, then the following
inequality is valid for Formulation (8.16)–(8.21):∑

j∈S
(qj − sj) ≤

∑
j∈S

djlzj + ul. (8.33)

Proof. Consider a point (u, z). If
∑
j∈S zj = 0, then qj = 0 and sj = 0 for j ∈ S,

and the inequality is satisfied. Otherwise, let b = min{j ∈ S : zj = 1}. Then

∑
j∈S

(qj − sj) ≤
l∑

j=b
(qj − sj) ≤ dbl + ul ≤

∑
j∈S

djlzj + ul.

A similar straightforward adaptation of the two valid inequalities proposed
in [AK05] (for lot-sizing with inventory bounds) leads to:

Proposition 8.3. Given an interval L = [k, l] and S ⊆ L, then the following
inequalities:

uk−1 +
∑
j∈S

(qj − sj) ≤
∑
j∈S

dkjzj + U (8.34)

uk−1 +
∑
j∈S

(qj − sj) ≤
∑
j∈S

min{dkj , dkl − U, djl}zj + U + ul (8.35)

are valid for Formulation (8.16)–(8.21).

One can also consider, for a [k, l] interval, the set defined by:

uk−1 +
l∑

j=k
ajzj ≥ dkl,

where aj = min{Qmaxj , djl}. Let us define the complemented variables z̄t = 1− zt.
Then, we can work on the so-called continuous 0-1 knapsack set:

l∑
j=k

aj z̄j ≤
l∑

j=k
aj − dkl + uk−1,

that has been studied in [MW99] and [MNS00], where, given a cover C ⊆ T ,
facet-defining MIR inequalities are proposed.

In presence of Unit Commitment-like logical constraints, it is also possible to
tighten the formulation with valid inequalities that have been studied for the
Unit Commitment problem. For example, the work in [OAV12], [DKKRA13]
and [MELR13] contains polyhedral studies of the ramping constraints, while [HOO09],
[LLM04] and [RT05] investigate the minimum up/downtime polytopes.
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Numerical example

To give an idea of the effectiveness of the reformulation and the valid inequalities, we
report some computational results on a small single-item, single-machine instance
with n = 7 time periods.

In Table 8.1, we report the linear programming bound and the percentage gap
obtained with the nominal formulation (8.16)–(8.21), and the extended formula-
tion (8.22)–(8.30), and activating different classes of valid inequalities, namely: the
two simple valid inequalities (8.31) and (8.32), the (l, S) inequalities (8.33), and
the valid inequalities (8.34) and (8.35). The (l, S) inequalities (8.33) and the in-
equalities (8.34)–(8.35) are exponentially many, but the size of the example makes
possible generating all of them a priori. The numerical results suggest that the

nominal form. extended form. (8.31)+(8.32) (8.33) (8.34)+(8.35) bound gap
× 80.21 4.51

× 81.26 3.26
× × 80.43 4.25
× × 81.26 3.26
× × 80.43 4.25

× × 81.40 3.10
× × 81.26 3.26
× × 83.40 0.71

× × × × 83.40 0.71
× × × × 83.40 0.71

Table 8.1: Linear programming bound and relative gap of different formulations
with respect to the optimal value (84.0).

inequalities can be quite effective in strengthening the formulation, in particular in
combination with the extended formulation. In particular, observe that, with the
extended formulation, adding inequalities (8.34)+(8.35) is sufficient to obtain the
best gap (0.71%), while to obtain the same bound with the original formulation all
the valid inequalities have to be added.
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8.1.3 Dynamic programming algorithm for problems with
constant production bounds and concave costs

Let us consider the following formulation of a variant of the single-item operational
planning problem in the space of the production variables q:

min
∑
t∈T

φt(qt) +Ktzt (8.36)

ut + dt = ut−1 + qt t ∈ T (8.37)
ut ≤ U t ∈ T (8.38)
qt ≤ ztQmax t ∈ T (8.39)
zt ∈ {0, 1} t ∈ T (8.40)
qt, ut ≥ 0 t ∈ T, (8.41)

where the lower production bound on qt is dropped, and we assume that the upper
bound Qmax is constant. If we take Qmax := maxt∈T {Qmaxt }, this is clearly a
relaxation of the complete problem (8.10)–(8.11). Note also that the slack variable
st is no longer necessary in the balance constraint, since it will always be 0 in an
optimal solution.

If φ is concave, the problem is shown to be polynomially solvable in [Wol06], due
to its equivalence to lot-sizing with delivery time windows. In this section we first
describe in detail a O(n4) dynamic programming algorithm for this variant, which
combines the one in [AK08] for the uncapacited lot-sizing with inventory bounds
and the algorithm described in [Wol06] for the capacitated lot-sizing without in-
ventory bounds. Then, we show how this algorithm can be extended to account
also for constant lower bounds on the production.

2-phase dynamic programming algorithm

To devise a correct dynamic programming algorithm, it is first necessary to describe
some theoretical results on the structure of an optimal solution that will guarantee
its correctness. Let us begin by extending the definition of regeneration interval,
which is a concept widely used in lot-sizing theory.

Definition 8.4. The interval [k, l] is a U -regeneration interval for a solution
(q, u, z) if uk−1 ∈ {0, U}, ul ∈ {0, U} and 0 < ut < U for all t ∈ [k, l − 1].

A regeneration interval can be seen as the special case of U -regeneration interval
with uk−1 = 0 = ul. We represent the four types of U -regeneration intervals by
[k, l]ab, where a = uk−1 ∈ {0, U}, b = ul ∈ {0, U}.

Since we can always consider an optimal solution as a sequence of U -regene-
ration intervals, the idea of the algorithm is, in the first phase, to find optimal
solutions for each one of the possible intervals [k, l]ab, while, in a second phase, we
use these optimal sub-plans to construct the overall optimal value.
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Suppose that [k, l]ab is a U -regeneration interval forming part of an optimal
solution (q, u, z). We can show that there exists an optimal solution where at most
one period p of the U -regeneration interval has qp /∈ {0, Qmax}, and such period
is called a fractional period. In other words, in all (but one) periods of the [k, l]
interval the production is either at 0 or at the upper bound Qmax. The proof is
along the lines of the one provided in [FK71] for the case without inventory bounds.

Proposition 8.5. If a feasible solution (q, u, z) is an extreme point of the poly-
hedron defined by the system (8.37)–(8.41), then it consists only of U -regeneration
intervals such that, for each interval [k, l]ab, there exists at most one fractional
period p ∈ [k, l] with 0 < qp < Qmaxp .

Proof. Suppose (q, u, z) is an extreme point, and let us consider a U -regeneration
interval [k, l]ab that is part of that solution. Let qkl be the vector of size l − k + 1
containing the elements of q in the interval [k, l]. Assume that the production
sequence q contains at least two periods r and v such that 0 < qr < Qmaxr and
0 < qv < Qmaxv . We assume that there are just two such periods, without loss of
generality. Let us define a value ε:

ε = 1
2 min{qr, Qmaxr − qr, qv, Qmaxv − qv, min

k≤t≤l−1
ut, min

k≤t≤l−1
Ut − ut},

where we multiply by a factor 1
2 < 1 so that ε > 0 by the definition of U -regenera-

tion interval. Let δi the vector with a 1 in i-th position and 0 elsewhere. Then, we
can define the production sequences: q′

kl
= q

kl
− εδr + εδv and q′′

kl
= q

kl
+ εδr− εδv.

By construction of ε, it is easy to verify that q′
kl

and q′′
kl

define feasible solutions.
However, 1

2 (q′
kl

+ q′′
kl

) = q
kl
, contradicting the assumption that q is an extreme

point. The result follows.

Note that the proposition is valid also for non-constant capacities and inventory
bounds.

It is a well known fact that, in a linear program, there is at least an extreme
point which is an optimal solution. This is true also if the production cost ctqt is
replaced by a concave function φt(qt). Proposition 8.5 allows us to characterize an
extreme point as a sequence of [k, l]ab U -regeneration intervals, with initial level a
and final level b, so that production is either at 0 or at full capacity for all t ∈ T ,
except for, at most, one fractional periods in each U -regeneration interval.

More precisely, it is easy to see that the overall production in an optimal solution
for an interval [k, l]ab with a ∈ {0, U} and b ∈ {0, U} will have the value P abkl =
dkl+b−a. Then, in the constant-capacity case, the value assumed in the fractional
period (if any) is the remainder of the integer division P abkl /Qmax:

ρabkl = P abkl −
⌊
P abkl
Qmax

⌋
Qmax,
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with 0 ≤ ρabkl < Qmax, and there will be exactly b Pab
kl

Qmax c periods with production
level Qmax.

Let us denote with Gabkl (t, τ, δ) the value of a minimum cost solution, in a U -
regeneration interval [k, l]ab, for periods k up to t, during which production occurs
τ times at full capacity and δ ∈ {0, 1} times at level ρabkl .

To preserve the assumptions, the recursion has to ensure that the inventory
lower and upper bounds (0 and U) are never reached within the U -regeneration
interval. Hence, if τQmax + δρabkl ≤ dkt−a, it is impossible to have ut > 0 for these
(τ, δ) values and so we define Gabkl (t, τ, δ) =∞. If τQmax + δρabkl ≥ dkt− a+U , it is
impossible to have ut < U for these (τ, δ) values and so we define Gabkl (t, τ, δ) =∞.
If τ + δ > t− k + 1 for some (τ, δ) values, it is not possible to produce τ + δ times
in the interval [k, t] and again Gabkl (t, τ, δ) = ∞. Moreover, for all τ < 0, we set
Gabkl (t, τ, δ) =∞.

A forward recursion to compute Gabkl (t, τ, δ) for the case ρabkl > 0 is:

Gabkl (t, τ, 0) =



if τQmax ≤ dkt − a
∞ or τQmax ≥ dkt − a+ U

or τ > t− k + 1

min

{
Gabkl (t− 1, τ, 0),
Gabkl (t− 1, τ − 1, 0) +Kt + ctQ

max
otherwise

for t = k, . . . , l − 1, τ = 0, . . . ,
⌊
Pab

kl

Qmax

⌋
, and

Gabkl (t, τ, 1) =



if τQmax + ρabkl ≤ dkt − a
∞ or τQmax + ρabkl ≥ dkt − a+ U

or τ > t− k

min


Gabkl (t− 1, τ, 1),
Gabkl (t− 1, τ − 1, 1) +Kt + ctQ

max,

Gabkl (t− 1, τ, 0) +Kt + ctρ
ab
kl

otherwise

for t = k, . . . , l − 1, τ = 0, . . . ,
⌊
Pab

kl

Qmax

⌋
.

For t = l, the recursion is computed only for τ = b Pab
kl

Qmax c. If ρabkl = 0, the
equation is as follows:

Gabkl (l, b
P abkl
Qmax

c, 0) = min
{
Gabkl (l − 1, b Pab

kl

Qmax c, 0),
Gabkl (l − 1, b Pab

kl

Qmax c − 1, 0) +Kl + clQ
max

while, if ρabkl > 0:

Gabkl (l, b
P abkl
Qmax

c, 1) = min


Gabkl (l − 1, b Pab

kl

Qmax c, 1),
Gabkl (l − 1, b Pab

kl

Qmax c − 1, 1) +Kl + clQ
max,

Gabkl (l − 1, b Pab
kl

Qmax c, 0) +Kl + clρ
ab
kl

.
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Starting from:

Gabkl (k, 1, 0) = Kk + ckQ
max if 0 < Qmax + a− dk < U,

Gabkl (k, 0, 1) = Kk + ckρ
ab
kl if 0 < ρabkl + a− dk < U,

Gabkl (k, τ, δ) =∞ otherwise,

we evaluate the recursion for increasing values of t and all values of τ , thus com-
puting αabkl = Gabkl (l,

⌊
Pab

kl

Qmax

⌋
, 1), which is the value of a minimum cost solution for

the U -regeneration interval [k, l]ab with ρabkl > 0.
When ρabkl = 0 and P abkl > 0, it suffices to use the same recursion for Gabkl (t, τ, 0)

to calculate αabkl = Gabkl (l,
⌊
Pab

kl

Qmax

⌋
, 0). If P abkl < 0, then we set αabkl = ∞, and if

P abkl = 0, it holds trivially that αabkl = 0.
At this point, we have obtained the optimal solutions for all possible U -regene-

ration intervals [k, l]ab. The second phase consists in combining these solutions to
find the overall optimal solution. To do so, once the optimal values αabkl have been
computed, it is enough to find the sequence of matching U -regeneration intervals
that minimize the overall cost. With matching intervals, we refer to intervals
[k, l]ab and [k′, l′]a′b′ such that k′ = l + 1 and b = a′, that is, the intervals are
consecutive and the final inventory level of the first interval (ul) is the same as the
initial inventory level of the second interval (uk−1). This can be formulated as a
shortest-path problem in an directed acyclic graph.

Proposition 8.6. Let G = (V,A) be a directed graph with the set of nodes V =
{10, 20, . . . , (n + 1)0} ∪ {2U , 3U , . . . , nU}. Each node with label t0, t ∈ [1, n + 1]
corresponds to a period t which immediately follows a U -regeneration interval [k, t−
1]a0 with empty final inventory. Each node with label tU , t ∈ [2, n] corresponds to
a period t which immediately follows a U -regeneration interval [k, t− 1]aU with full
final inventory. Since we assume that u0 = 0 = un, the graph does not containt the
nodes 1U and (n + 1)U . The arc set consists of all the forward arcs from a node
k0 or kU to all the nodes l0 and lU such that l > k. The cost on an arc connecting
nodes ka and lb has weight αabk,l−1 equivalent to the optimal solution for the interval
[k, l− 1]ab. Then, the shortest path on graph G from node 10 to (n+ 1)0 solves the
problem.

The graph is acyclic by construction, and a topological order is trivially obtained
by considering the nodes sorted by their index. Then, a shortest path is found
in linear time with respect to the cardinality of the arc set of the graph via a
simple dynamic programming algorithm, going backwards from the ending node.
Algorithm 8.1 describes a simple shortest-path algorithm over the topologically
sorted nodes in the graph, where σ(i)a is the value of the shortest path from node
ia to the destination node (T + 1)0.

To summarize the overall complexity of the algorithm, in the first phase, the
dynamic programming algorithm for each [k, l]ab is O(T 2). There are 4T (T+1)

2 −
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Figure 8.1: Graph G used in the second phase for an instance with n = 3.

Algorithm 8.1: Dynamic-programming algorithm to determine a shortest
path in G.
Initialize all σ(i)a ←∞;
σ(T + 1)0 = 0;
for i← T . . . 1, a ∈ [0, U ] do

for j ∈ [i+ 1, T + 1] do

σ(i)a ← min


σ(i)a
σ(j)0 + αa0

ij−1

σ(j)U + αaUij−1

end
end
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2T − 2(T − 1) − 1 intervals (arcs in the graph), so the first phase has an overall
O(T 4) running time. The second phase has a running time which is linear with
the number of arcs. Thus, the overall optimization time to solve to optimality the
problem defined in (8.36)–(8.41) is O(T 4). While we have described only a method
to find the optimal value, in both phases of the algorithm it is easy to augment the
dynamic programming updates to also keep track of the structure of the optimal
solution.

Finally, we point out that the algorithm can be easily verified to be correct also
for the general case with non-constant inventory bounds. Essentially, it is enough
to replace all occurrences of U with the appropriately indexed Ut. We have chosen
to describe the version with constant inventory bounds to adopt a lighter notation.

Constant lower bounds on production

The algorithm can be extended to the case with constant lower bounds on the
production:

ztQ
min ≤ qt ≤ ztQmax. (8.42)

With the additional assumption that un = 03, Proposition 8.5 is still valid, in this
slightly different form:

Proposition 8.7. If a feasible solution (q, u, z) is an extreme point of the poly-
hedron defined by the system (8.37)–(8.41), and Constraint (8.39) is replaced with
(8.42), then it consists only of U -regeneration intervals such that, for each interval
[k, l]ab, there exists at most one fractional period p ∈ [k, l] with Qminp < qp < Qmaxp .

The proof is basically the same, obtained by defining ε = 1
2 min{qr−Qminr , Qmaxr −

qr, qv−Qminv , Qmaxv −qv,mink+1≤t≤l ut,mink+1≤t≤l Ut−ut}. Then, an optimal so-
lution for a U -regeneration interval is characterized as τ0 periods with production
at full capacity, ν0 periods with production at minimum capacity and 0 or 1 frac-
tional periods. The dynamic programming algorithm can be modified considering
the function Gabkl (t, τ, ν, δ; ρ0

kl) that represents the value of a minimum cost solution
for period k up to t during which production occurs τ times at Qmax, ν times at
Qmin and δ times at level ρ0

kl.
To compute the optimal solution for a U -regeneration interval αabkl , one needs

to compute Gabkl (l, τ0, ν0, δ0; ρ0
kl) for each feasible triplet (τ0, ν0, δ0) that satisfies

τ0Q
max + ν0Q

min + δ0ρkl = P abkl . The optimal value αabkl will be the minimum
among them.

The dynamic programming computation of Gabkl involves an additional variable
ν in [k, l], so it increases by a factor O(n), and has to be repeated as many times
as there are feasible triplets (τ0, ν0, δ0).

3The algorithm can be generalized even to the case with un > 0, but we omit the details here.
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Proposition 8.8. Given a production quantity P abkl in an interval [k, l], the number
of feasible triplets (τ0, ν0, δ0) with τ0 ∈ N, ν0 ∈ N, δ0 ∈ {0, 1}, such that:

τ0Q
max + ν0Q

min + δ0ρ = P abkl ,

τ0 + ν0 + δ0 ≤ l − k + 1

and either ρ = 0 or Qmin < ρ < Qmax, is bounded by O(n).

Proof. For each value of ν0 in [0, l − k + 1], consider the equation τ0Q
max + ρ =

P abkl − ν0Q
min. The only possible value for τ0, with ρ ≤ Qmax, is the result of the

integer division:

τ0 =
⌊
P abkl − ν0Q

min

Qmax

⌋
,

and the corresponding production level in the fractional period will be its remain-
der:

ρ = P abkl −
⌊
P abkl − ν0Q

min

Qmax

⌋
Qmax.

Then, if ρ = 0 (δ0 = 0) or ρ ≥ Qmin (δ0 = 1) and τ0 + ν0 + δ0 ≤ l − k + 1, the
triplet (τ0, ν0, δ0) is feasible. Since there is at most a (τ0, δ0) pair for each possible
value of ν0, the number of possible feasible triplets is O(n).

The inner dynamic programming algorithm is O(n3), which has to be repeated
O(n) times (the number of triplets) for each of the O(n2) intervals. This leads
to an overall computing time of O(n6) for the first phase. The second phase of
the algorithm is unchanged, as the numbers of arcs in the graph is the same,
so the bottleneck of the algorithm remains the first phase. Without a doubt, it
is a rather large complexity, although polynomial; in practice, we have observed
that a state-of-the-art MILP solver is, in most cases, more efficient that a simple
implementation of this algorithm. Still, this allows us to state that:

Proposition 8.9. The lot-sizing problem with concave production costs, inven-
tory bounds and constant upper and lower bounds on production can be solved in
polynomial time.

8.2 Generation of a non-storable item (electrical
energy)

The formulations discussed in the previous section model a single generation unit
producing a quantity qt that can be stored from a time period t to the following pe-
riod t+1, such as thermal energy. However, some items typically cannot be stored,
e.g., electrical energy, giving rise to a different problem, which, in the single-unit
case, is essentially a standard Unit Commitment problem. In this variant, exchange
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with the power grid is allowed. The single-item problem where the machine only
generates a non-storable item can be written as:

min
∑
t∈T

ctft +Ktzt + p+
t e

+
t − p−t e−t (8.43)

et + e+
t − e−t = wt t ∈ T

ztF
min
t ≤ ft ≤ ztFmaxt t ∈ T

et = ztht(ft) t ∈ T
zt ∈ {0, 1} t ∈ T
et, e

+
t , e
−
t , ft ≥ 0 t ∈ T

The demand wt can be satisfied by the amount et that is generated by the machine
and/or by the amount e+

t that is purchased externally, e.g., electrical energy bought
from the grid. If the production level et exceeds the internal demand wt, it is
possible to sell the exceeding amount e−t to the grid with price p−t . We make
the reasonable assumption that the electricity selling price p−t is smaller than its
purchase cost p+

t (essentially, we assume it is an arbitrage-free market). However,
it is not true, in general, that the unit production cost is larger than the selling
price: in that case, one can gain a profit by producing more than wt.

Remark: It is possible to assume without loss of generality that

ht(Fmint ) ≤ wt ≤ ht(Fmaxt ) ∀t ∈ T,

i.e., any demand wt can be entirely satisfied (in principles) without selling to
or purchasing from the grid. If this were not the case, it is always possible to
transform the problem obtaining an equivalent one where the assumption is ful-
filled. If wt > ht(Fmaxt ), one can take w′t := ht(Fmaxt ) and add to the objec-
tive function a constant term p+

t (wt − ht(Fmaxt )), while if wt < ht(Fmint ), one
can take w′t := ht(Fmint ) and add to the objective function a constant term
−p−t (ht(Fmint )− wt).

If we do not consider additional Unit Commitment-like constraints that couple
consecutive time periods, each period can be solved independently. The optimal
value for a given t ∈ T is obtained either purchasing the whole demand from
the grid, hence zt = 0, et = 0, e+

t = wt and cost p+
t wt, or determining the

optimal solution to the nonlinear, continuous problem where zt = 1. Assuming
that ht is invertible, let us take θt(·) := cth

−1
t (·). Let Emint = ht(Fmint ) and

Emaxt = ht(Fmaxt ), and let us drop the subscript t for the moment. Then, the
single-period subproblem, for z = 1, thanks to the assumption p+ > p−, can be
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written as:

ζ = min θ(e) + max{p+(w − e), p−(w − e)} (8.44)
Emin ≤ e ≤ Emax (8.45)
e+, e− ≥ 0. (8.46)

If θ is concave, the optimal solution will be one of the extreme points of the feasible
region, that are: e = w, e+ = 0, e− = 0; e = Emin, e+ = w − Emin, e− = 0; and
e = Emax, e+ = 0, e− = Emax − w. If θ is convex, one can write KKT optimality
conditions.

e

ce+ max{p+(w − e), p−(w − e)}

Emin w

p−w

cw

p+w

Emax

Figure 8.2: Plot of the objective function of the single-period subproblem when θ
is linear with production cost c, and p− < c < p+.

The value of the optimal solution to the complete multi-period problem in
Formulation (8.43) is then given by:∑

t∈T
min{K + ζt, p

+
t wt}, (8.47)

where ζt is the optimal value for the subproblem (8.44)–(8.46) in period t.
Note that, if the Unit Commitment-like logical constraints (minimum uptime,

ramp-up rates, . . . ) are included, the time periods are no longer independent.
Then, it is not possible to solve the overall problem by optimizing the single-period
subproblems. In this case, we have a single-unit variant of the problems usually
studied in the UC literature. Even if we do not discuss them, we point out that fast
dynamic programming algorithms exist for several variants of the single-unit UC
problem with logical constraints, see e.g. [FG06] for the case of ramp-up constraints.
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8.3 Cogeneration unit with production of a storable
and a non-storable item

Let us now consider a cogeneration unit, i.e. a machine that generates simulta-
neously more items. We start by considering the generation of only two different
items: an item q (e.g., thermal energy), that can be stored in the inventory, and an
item e (e.g., electrical energy), that cannot be stored, but can be purchased from
the market (or sold, if in excess). We make the assumption that the electricity
selling price p−t is smaller than its purchase cost p+

t (arbitrage-free market). A
mathematical programming formulation is as follows:

min
∑
t∈T

ctft +Ktzt + p+
t e

+
t − p−t e−t (8.48)

ut + dt = ut−1 + qt − st t ∈ T (8.49)
et + e+

t − e−t = wt t ∈ T (8.50)
ut ≤ U t ∈ T (8.51)
ztF

min
t ≤ ft ≤ ztFmaxt t ∈ T (8.52)

qt = ztgt(ft) t ∈ T (8.53)
et = ztht(ft) t ∈ T (8.54)
zt ∈ {0, 1} t ∈ T. (8.55)

For any t ∈ T , we assume that gt and ht are nondecreasing, and that gt(ft) ≥
0, ht(ft) ≥ 0 for ft ∈ [Fmint , Fmaxt ]. The formulation is similar to the single-
item models previously described. However, note that, in this case, dissipating
a quantity of item q or selling the exceeding amount of e can be necessary more
often: given a demand pair (dt, wt) to be fulfilled, there might not exist a value of
ft such that the demands are exactly satisfied without either dissipation or external
purchase.

Assume that there is no external purchase, e+ = 0, and the inventory levels
ut−1, ut are fixed. To get a feasible solution for period t it is enough to find the
smallest γ such that qt = gt(γ) ≥ dt + ut − ut−1 and et = ht(γ) ≥ wt. In an
optimal solution, at least one of the two inequalities will be tight. If γ is such that
et = ht(γ) = wt and gt(γ) > dt+ut−ut−1, then some q-energy has to be dissipated,
and st > 0. If, viceversa, qt = gt(γ) = dt + ut − ut−1 and et = ht(γ) > wt, it is
possible to sell the exceeding amount e−t > 0 with a profit.

An alternative option, which might be convenient depending on the price p+
t and

the marginal cost of generating qt, is to consider a γ such that qt = gt(γ) ≥ dt+ut−
ut−1 and et = ht(γ) < wt, and purchase the remaining quantity e+

t = wt − et > 0
(with a per-unit cost p+

t ).
If we assume, w.l.o.g., that h(Fmint ) ≤ wt ≤ h(Fmaxt ) (see Section 8.2), we

can derive the following simple propositions that characterize optimal solutions
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under specific assumptions on the production cost of electrical energy. The idea is
that, if the per-unit selling price of the electrical energy is larger than its marginal
production cost, then it always pays off to generate as much as possible. Moreover,
if the revenue obtained selling the amount exceeding the demand is even larger than
its overall production cost (including the fixed cost), the net income is positive, thus
it is always convenient to produce (in order to sell).

Proposition 8.10. For a given t ∈ T , if p−t
∂ht
∂ft

(x) > ct ∀x ∈ [Fmint , Fmaxt ], then
in any optimal solution zt = 1 =⇒ ft = Fmaxt .

Proof. By hypothesis, zt = 1. For ht(ft) ≥ wt, in any optimal solution e+
t = 0 and

the objective function reduces to Kt + ctft − p−t (ht(ft) − wt). Since p−t
∂ht
∂ft

(x) >

ct ∀x ∈ [Fmint , Fmaxt ], the objective function is monotonically decreasing in ft, and
the minimum over [h−1

t (wt), Fmaxt ] is attained in Fmaxt , with value Kt + ctF
max
t −

p−t (ht(Fmaxt ) − wt). We need to show that the value for ft = Fmaxt is also as
good as any solution obtained in the interval [Fmint , h−1

t (wt)]. For ht(ft) ≤ wt,
e−t = 0 and the objective function will be Kt + ctft − p+

t (ht(ft) − wt). For any
ft ∈ [Fmint , h−1

t (wt)], we have that Kt+ctF
max
t −p−t (ht(Fmaxt )−wt) ≤ Kt+ctft−

p−t (ht(ft)− wt) ≤ Kt + ctft − p+
t (ht(ft)− wt), since p+

t > p−t .
It follows that the minimum for zt = 1 is obtained for ft = Fmaxt .

Proposition 8.11. For a given t ∈ T , if p−t
∂ht
∂ft

(x) > ct ∀x ∈ [Fmint , Fmaxt ]

and p−t (h(Fmaxt ) − wt) > Kt + ctF
max
t , then in any optimal solution zt = 1 (and

ft = Fmaxt ).

Proof. The minimum for zt = 1 is in ft = Fmaxt by Proposition 8.10. Then, if
p−t (h(Fmaxt )−wt) > Kt+ ctF

max
t , the cost in t is negative if zt = 1. Since if zt = 0

the cost would be p+
t h
−1
t (w) ≥ 0, and we assume there are no additional constraints

on the binary variables, it is always convenient to produce in t (zt = 1).

Proposition 8.12. For a given t ∈ T , if p+
t

∂ht
∂ft

(x) > ct ∀x ∈ [Fmint , Fmaxt ], then

in any optimal solution zt = 1 =⇒ ft ≥ h−1
t (wt).

Proof. By hypothesis, zt = 1. For ht(ft) ≤ wt, in any optimal solution e−t = 0
and the objective function will be Kt + ctft − p+

t (ht(ft)− wt). Since p+
t

∂ht
∂ft

(x) >

ct ∀x ∈ [Fmint , Fmaxt ], the objective function is monotonically decreasing in ft, and
the minimum over [Fmaxt , h−1

t (wt)] is attained in ft = h−1
t (wt). It follows that, if

zt = 1, ft ≥ h−1
t (wt).

Proposition 8.13. For a given t ∈ T , if p+
t

∂ht
∂ft

(x) > ct ∀x ∈ [Fmint , Fmaxt ] and

p+
t wt > Kt + cth

−1(wt), then in any optimal solution zt = 1 (and ft ≥ h−1
t (wt)).
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Proof. The hypothesis implies that producing the whole demand (including the
fixed cost Kt), with zt = 1, is cheaper then buying the total demand from the grid,
with zt = 0 and cost p+

t wt.

For the linear variant of the two-item case, it is possible to obtain a result
similar to the one that allowed us to derive a polynomial dynamic programming
algorithm for the constant capacity single-item variant.

Proposition 8.14. If a feasible solution (q, u, s, e+, e−, z) is an extreme point of
the polyhedron defined by the system (8.49)–(8.55) (where g and h are linear), then
it consists only of U -regeneration intervals such that, for each interval [k, l]ab, there
exists at most one fractional period p ∈ [k, l] with Qminp < qp < Qmaxp and qp 6= wp.
If p−t > ct ∀t ∈ [k, l], then there are no fractional periods.

Proof. Similar argument to the one in the proof of Proposition 8.5, with:

ε = 1
2 min{qr −Qminr , Qmaxr − qr, qv −Qminv , Qmaxv − qv,

min
k+1≤t≤l

ut, min
k+1≤t≤l

Ut − ut, |qt − wt|}.

However, this characterization is not sufficient, in general, to extend the dy-
namic programming algorithm: one would need to have not only constant capac-
ities, but also constant demands wt, which appears to be a rather restrictive as-
sumption. Even if this were the case, we would incur an even larger computational
complexity.

8.4 Cogeneration unit with multiple storable and
non-storable items

Let us now generalize the formulation to account for a cogeneration unit generating
a set I of items with storage (e.g., thermal and refrigeration energy at different
temperature levels), and a set J of non-storable items with market exchange. In
this section, we discuss some future possible lines of research, namely, a class of
valid inequalities and a Lagrangian relaxation.

A complete formulation for the operational planning problem of a cogeneration
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unit with multiple items can be written as follows:

min
∑
t∈T

[ctft +Ktzt +
∑
j∈J

(p+
t e

j+
t − p−t e

j−
t )] (8.56)

uit + dit = uit−1 + qit − sit i ∈ I, t ∈ T (8.57)

ejt + ej+t − e
j−
t = wjt j ∈ J, t ∈ T (8.58)

uit ≤ U i i ∈ I, t ∈ T (8.59)
ztF

min
t ≤ ft ≤ ztFmaxt t ∈ T (8.60)

qit = ztg
i
t(ft) i ∈ I, t ∈ T (8.61)

ejt = zth
j
t (ft) j ∈ J, t ∈ T (8.62)

zt ∈ {0, 1} t ∈ T, (8.63)

where each item has its own inventory uit, but the quantity which is generated
in period t is driven by the same variable ft for all of them, and there is only
one global on/off decision zt. While the assumption of one degree-of-freedom for
a simple cogeneration backpressure unit is often fulfilled, to have a model which
is as inclusive as possible one can replace Constraints (8.61)–(8.62) with a single
nonlinear linking constraint for each t:

ft = ztψt(q1
t , q

2
t , . . . , e

1
t , e

2
t , . . . ) t ∈ T, (8.64)

which in the linear case becomes:

ft = α1
t q

1
t + α2

t q
2
t + · · ·+ β1

t e
1
t + β2

t e
2
t + . . . t ∈ T, (8.65)

to account for the fact that it is possible to have units with more than one degree
of freedom. Indeed, in general there can be ways to regulate a unit so as to modify
the ratio between the production levels of the items. In that case, instead of
univariate performance functions that determine a 1-dimensional curve in the space
of the output variables, the feasible vectors (q1

t , q
2
t , . . . , e

1
t , e

2
t , . . . ) would belong to

a higher-dimensional subspace.

Deriving valid inequalities

Since it is an intersection of single-item polyhedral sets (with additional linking
constraints), all the valid inequalities for a single-item unit can be adopted in a
straightforward way to this case.

However, one can try to exploit the fact that a solution must fulfill all the
balance equations simultaneously. Then, let us consider, for a [k, l] interval, the set
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defined by:

u1
k−1 +

l∑
j=k

a1
jzj ≥ d1

kl

u2
k−1 +

l∑
j=k

a2
jzj ≥ d2

kl

where aij = min{Qmax,ij , dijl}, and for simplicity of notation we assume I has car-
dinality 2. By considering the complemented variables z̄t = 1− zt, one can define
a continuous 0–1 multidimensional knapsack set:

l∑
j=k

a1
j z̄j ≤ (

l∑
j=k

a1
j − d1

kl) + u1
k−1

l∑
j=k

a2
j z̄j ≤ (

l∑
j=k

a2
j − d2

kl) + u2
k−2

in analogy to the continuous 0-1 knapsack set of [MW99], for which MIR inequal-
ities can be derived. Lifted cover inequalities that attempt to exploit the global
structure of the problem for a pure 0-1 multidimensional knapsack problem have
been studied, e.g., by Kaparis and Letchford in [KL08]. However, to the best of our
knowledge, no work has appeared so far on multidimensional knapsack problems
with a continuous variable per constraint, that might be worth investigating.

Lagrangian relaxation

In order to compute good lower bounds, it is possible to build a Lagrangian relax-
ation obtained by decoupling the generated items and solving single-unit subprob-
lems. It is necessary to keep in the formulation the variables qit for each i ∈ I and
ejt for each j ∈ J , subject to the coupling constraints qit = αitft, e

j
t = βjt ft, and

the copy variables xit, yit ∈ {0, 1} such that zt = xit, zt = yjt . Then, dualizing the
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coupling equalities, we end up with the dual function defined as:

ω(µ, ν, π, ρ) = min
∑
t∈T

(ctft +Ktzt +
∑
j∈J

(pj+t ej+t − p
j−
t ej−t )

+
∑
i∈I

µit(αitft − qit) +
∑
j∈J

νjt (βitft − e
j
t ))

+
∑
i∈I

πit(zt − xit) +
∑
j∈J

ρjt (zt − y
j
t ))

uit + dit = uit−1 + qit − sit i ∈ I, t ∈ T

ejt + ej+t − e
j−
t = wjt j ∈ J, t ∈ T

uit ≤ U i i ∈ I, t ∈ T
ztF

min
t ≤ ft ≤ ztFmaxt t ∈ T

xitF
min
t ≤ qit ≤ xitFmaxt i ∈ I, t ∈ T

yjtF
min
t ≤ ejt ≤ y

j
tF

max
t j ∈ J, t ∈ T

zt, x
i
t, y

j
t ∈ {0, 1} t ∈ T,

The dual function is separable, and can be decomposed by item. The decomposi-
tion yields a subproblem of the form:

min
∑
t∈T

[ft(ct +
∑
i∈I

αitµ
i
t +
∑
j∈J

βjt ν
j
t ) + (Kt +

∑
i∈I

πit +
∑
j∈J

ρjt )zt] (8.66)

ztF
min
t ≤ ft ≤ ztFmaxt t ∈ T

zt ∈ {0, 1} t ∈ T,

the following subproblem for each item i ∈ I:

min
∑
t∈T

(−µitqit − πitxit) (8.67)

uit + dit = uit−1 + qit − sit t ∈ T
uit ≤ U i t ∈ T
xitF

min
t ≤ qit ≤ xitFmaxt t ∈ T

qit, u
i
t ≥ 0 t ∈ T

xit ∈ {0, 1} t ∈ T,

and the following for each item j ∈ J :

min
∑
t∈T

(pj+t ej+t − p
j−
t ej−t − ν

j
t e
j
t − ρ

j
ty
j
t ) (8.68)

ejt + ej+t − e
j−
t = wjt t ∈ T

yjtF
min
t ≤ ejt ≤ y

j
tF

max
t t ∈ T

ejt , e
j+
t , ej−t ≥ 0 t ∈ T

yjt ∈ {0, 1} t ∈ T.
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A Lagrangian relaxation yields solutions with a bound which is at least as
good as the one of the LP relaxation. Preliminary computations, with a simple
implementation of the subgradient method, show that this Lagrangian relaxation
provides bounds of good quality, strictly better than the LP bounds.

The crucial point is whether the Lagrangian dual problem maxλ ω(λ), where λ
is the vector of Lagrange multipliers, can be solved efficiently. This is true insofar
as the subproblems are easier than the original problem, as even the evaluation of
the function ω(λ) entails solving the subproblems exactly.

For the subproblem (8.66), this is certainly true, as it is trivially solved by
inspection. The subproblems (8.68) corresponding to the items in J are typically
easy, too, as they are non-storable single-item planning problems that can be solved
for each t independently. The feasible region of a single-period subproblem for an
item in J is shown in Figure 8.3. Observe that the polyhedron is unbounded –

e e+

−e−

0

Figure 8.3: Feasible region of the single-item, single-period subproblem obtained
in the Lagrangian decomposition for non-storable items. The lower and upper
bound on e are not shown.

given a ejt , it is possible to arbitrarily increase ej+t and ej−t – but the direction of
the objective function (with the usual assumption that pj+t ≥ p

j−
t ) and the bounds

on ejt make the optimal value always finite.

Proposition 8.15. The Lagrangian subproblem (8.68) for an item j ∈ J has a
finite optimal value that can be computed as the sum of the optimal values for each
period t ∈ T . The optimal solution is, for each t, the one with minimum value
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among the following:

yt = 0, et = 0, e+
t = wt, e

−
t = 0

yt = 1, et = Fmaxt , e+
t = wt − Fmaxt , e−t = 0

yt = 1, et = Fmaxt , e+
t = 0, e−t = Fmaxt − wt

yt = 1, et = Fmint , e+
t = wt − Fmint , e−t = 0

yt = 1, et = wt, e
+
t = 0, e−t = 0

yt = 1, et = Fmaxt , e+
t = wt − Fmaxt

yt = 1, et = wt, e
+
t = 0, e−t = 0

(8.69)

Proof. Since the problem is separable, we can consider the single-period problem for
machine j ∈ J and a fixed t. We drop for simplicity the j and t indices. The objective
function to be minimized is:

p+e+ − p−e− − νe− ρy.

Let us project the feasible region on the subspace (e+, e−), parametrized by the value
of e, according to the equation e+−e− = w−e. Although the feasible region is unbounded,
since by assumption p+ > p−, the optimal value will always be such that either e+ = 0
or e− = 0.

For y = 0, e = 0 and the solution is e = 0, e+ = w, e− = 0, with value p+w. For
y = 1, e belongs to the interval [Fmin, Fmax]. The Lagrangian multiplier ν is free in sign,
so we have two cases. If ν > 0, there is an incentive to increase e as much as possible.
Thus, e = Fmax. If Fmax ≤ w, the solution is e = Fmax, e+ = w − Fmax, e− = 0. If
Fmax > w, the solution is e = Fmax, e+ = 0, e− = Fmax − w, with a negative objective
function. If ν < 0, the optimization direction goes towards decreasing e. If p+ ≤ −ν, that
is, e+ is cheaper than e, the optimal solution will be e = Fmin, e+ = w−Fmin, e− = 0 or
e = w, e+ = 0, e− = 0 if Fmin > w. If p+ > −ν, that is, e+ is more expensive than e, the
optimal solution will be either e = Fmax, e+ = w−Fmax, e− = 0, or e = w, e+ = 0, e− = 0
if Fmax > w.

It remains to be seen whether the Lagrangian subproblem (8.67), for the items
in I, can be solved significantly faster than the complete multiple-item problem.
If the production capacities are constant, one can use the dynamic programming
algorithm described in Section 8.1.3, and solve the subproblems in polynomial time.
In the general case, where bounds are not constant or additional UC-like logical
constraints are considered, the subproblems (8.67) have to be solved as mixed-
integer programs. Thanks to the decomposition, they can be solved in parallel,
and valid inequalities for single-item lot-sizing problems with bounded inventory
can be used. Computational experiments suggest that the relaxation is (not yet)
computationally attractive with respect to a MILP approach. However, it must be
noted that the choice of more sophisticated techniques for the optimization of the
non-differentiable dual problem, such as bundle methods, could be of help, as well
as improving the efficiency of solving the Lagrangian subproblems.
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8.5 Concluding remarks
In this chapter, we have discussed the main building blocks of the operational
planning problem for cogeneration systems, i.e., the single-unit problems with
generation or cogeneration of multiple storable and non-storable items. For the
single-item problem with constant upper and lower production bounds, we have
described a dynamic programming-based polynomial-time algorithm. For prob-
lems with nonconstant bounds and multiple-items, valid inequalities from classic
production planning problems can be extended. In Chapter 10, we will discuss a
detailed MI(N)LP formulation for a real-world application, with systems including
multiple cogeneration units and multiple items.

As previously mentioned, this is a first step in investigating MIP approaches
for operational planning problems of cogeneration systems. A thorough polyhe-
dral study of the single-unit variants would allow us to deal also with cogeneration
systems containing multiple (co)generation units, for instance, by extending the
single-unit valid inequalities, or decoupling the problem into single-unit subprob-
lems by means of a Lagrangian relaxation.
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CHAPTER9
Robust optimization for production and

operational planning

The parameters appearing in some classes of optimization problems are naturally
prone to uncertainty. As an example, in the operational planning of cogenera-
tion systems, the actual demands of the items over the time horizon can deviate
significantly from the forecasts. In these cases, uncertainty plays a crucial role in
determining the practical effectiveness of a solution: an optimal plan is of little use,
if any small variation in the parameters heavily affects its cost – or even threatens
its feasibility. Then, it is of the utmost importance to protect against the deviations
that may occur in practice.

In this chapter, we investigate robust optimization approaches for the basic
block of our operational planning problem, i.e., the single-unit, single-item variant,
starting from existing approaches for production planning. Section 9.1 gives a
brief introduction to optimization under uncertainty and, in particular, robust
optimization approaches for production planning. In Section 9.2 we describe a
Γ-robust optimization model for production planning, first proposed in [BT06],
and we point out how it can be revised to be slightly less conservative. We also
derive a class of (l, S) inequalities that are valid for the Γ-robust version of general
production planning problems. In Section 9.3 we show how the revised formulation
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can be extended to the operational planning of energy systems, and we show how
we can determine the robust solution just by solving the nominal problem with
modified parameters. Finally, Section 9.4 reports some computational experiments
comparing the robust formulations with various degrees of protection.

9.1 Robust optimization
Several ways to deal with uncertainty in optimization problems have been proposed
during the years.

Stochastic approaches use a priori knowledge of the probability distributions of
the parameters to obtain solutions where the minimum expected cost (or risk) is
sought. One issue is that it can be hard to estimate probability distributions in an
accurate way. Moreover, stochastic techniques usually require dealing with classes
of problems that are computationally heavier than the original (deterministic) one
(sometimes to the point of being intractable), since these approaches often incur
the so-called curse of dimensionality.

For these reasons, distribution-free approaches have been proposed and studied
especially in the last decade. In the Robust Optimization (RO) approach, the idea
is to protect the solution against all possible realizations belonging to a so-called
uncertainty set, in a min-max fashion. Determining the worst-case realization,
given a solution, requires solving an adversarial problem. Clearly, the choice of an
uncertainty set is crucial from the point of view of both the uncertainty modeling
(one must avoid begin too conservative while guaranteeing sufficient protection)
and the tractability of the resulting formulation.

The work of Soyster [Soy73] is among the first to formulate a robust problem to
obtain a solution which is feasible for all parameters belonging to a given convex
set. The core of Robust Optimization theory has been developed starting from the
90s, in particular in the work of Ben-Tal and Nemirovski [BTN00, BTN98], that
show how most convex optimization problems subject to ellipsoidal uncertainty can
be cast as second-order cone programs or SDP, that can be solved in polynomial
time. A RO framework that has gained considerable attention in recent years is the
so-called Γ-robustness, that originates from the work of Bertsimas and Sim [BS04].
This approach consists in characterizing the uncertainty set via a parameter Γ,
the so-called budget of uncertainty, which bounds the number of deviations of the
parameters from their nominal values. An attractive feature of Γ-robustness is
that the robust counterpart of a problem maintains, broadly speaking, the same
computational class of the deterministic formulation, in the sense that the robust
counterpart of a linear program will still be a linear program, and so on. This
is especially nice for problems with integer variables, for which the notions of
robustness of Ben-Tal and Nemirovski yield problems that, in practice, are often
too hard to deal with. Moreover, if the uncertainty set is constructed in a specific
way, one can derive probabilistic guarantees on the feasibility of the obtained plans,
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akin to what is done in chance-constrained optimization.
Another body of research on RO focuses on less conservative models, in what is

called adjustable or recoverable robustness, where (a part of) the decisions can be
modified after the realization of (a part of) the parameters. The adjustable robust
counterpart of an LP is, in general, already NP-hard, but it is possible to restrict
the adjustable variables yielding more tractable problems, as in affinely-adjustable
robustness [BTGGN04]. In combinatorial problems, the idea of recoverable robust-
ness has been explored in, e.g., [Büs11, BKK11a], and in [BKK11b] where a discrete
set of scenarios is considered. A first attempt to solve general two-stage RO models
with integer variables via a column-and-constraint generation algorithm is made
in [ZZ13], although the problem still appears intractable for all but the simplest
cases.

For an extensive treatment of the theory of RO, we refer to the book by Ben-Tal,
El Ghaoui and Nemirovski [BTEGN09], while a recent survey of robust optimiza-
tion approaches and applications can be found in [BBC11].

9.1.1 Right-hand-side uncertainty in production planning
In production planning, given a time horizon T , the result of the optimization is a
plan q (or policy), that consists in a sequence of production decisions qt for each
t ∈ T . A plan is said to be robust with respect to uncertainty in the right-hand
side if, for any realization of the demand vector d, the plan is still feasible, in the
sense that no constraints are violated, and its cost is within a certain upper bound.

Traditional work on production planning under uncertainty involves the use
of (approximate) dynamic programming [Por02, Ber95] approaches or stochastic
programming techniques [BL11] to derive policies that are optimal in expected
value or with respect to some risk measure. These approaches have been very
successful throughout the years, but have the drawbacks that we mentioned in the
previous section: namely, accurately estimating the distributions is hard, and for
some variants – especially with discrete variables – solving large-scale problems is
very challenging.

Even for robust optimization models, most of the work has been on problems
without discrete variables, which are typically more tractable. This is the case for
the affinely-adjustable robust approaches proposed by Ben-Tal et. al. in [BTGS09,
BTGNV05], and for the robust formulation proposed by See and Sim in [SS10], that
leads to a second-order cone program. Bienstock and Özbay in [BÖ08] study the
problem of robust production planning (without fixed costs) where the solutions
have to be basestock (i.e., the optimal production level at time t can be determined
as a function of the current demand and stock), and adopt a Benders like algorithm
to solve it efficiently.

Bertsimas and Thiele [BT06, BT04] apply the framework of Γ-robustness to
lot-sizing problems with backlogging and fixed costs, for the case of constant costs
of production, holding and shortage. This approach will be described more in detail
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later. A practical application of the Γ-robustness approach of [BT06] to furniture
manufacturing can be found in [JAM12].

9.2 Robust production planning
In order to be as self-contained as possible, in this section we discuss a robust
formulation for a general production planning problem that we will later adapt to
the operational planning problem. We start by considering a lot-sizing problem
with backlogging, where the inventory variables can also be negative, since this is
the case that is also considered in [BT06, BT04].

A standard mixed-integer programming formulation for production planning
with backlogging reads:

min
∑
t∈T

ctqt +Ktzt + max{htut,−ptut} (9.1)

ut−1 + qt = ut + dt t ∈ T (9.2)
0 ≤ qt ≤ Qtzt t ∈ T (9.3)
zt ∈ {0, 1} t ∈ T (9.4)

where qt are the production variables with per-unit cost ct and fixed costs Kt, ut is
the stock level at the end of period t, and ht and pt are, respectively, nonnegative
holding and shortage costs. Note that the inventory ut does not have any lower or
upper bounds.

Let us suppose that data uncertainty affects the demand parameters dt (right-
hand side of Constraints (9.2)). In order to adopt a robust optimization ap-
proach, it is convenient to reformulate the problem in a different way. We project
out each ut variable by summing the balance equations up to period t, that
is, we replace them in the objective function with their closed-form expression
ut =

(
u0 +

∑t
i=1(qi − di)

)
. Then, the piecewise linear holding/shortage cost func-

tion can be rewritten leading to the following MILP:

min
∑
t∈T

ctqt +Ktzt + yt (9.5)

yt ≥ ht

(
u0 +

t∑
i=1

(qi − di)
)

t ∈ T (9.6)

yt ≥ −pt

(
u0 +

t∑
i=1

(qi − di)
)

t ∈ T (9.7)

0 ≤ qt ≤ Qtzt t ∈ T (9.8)
zt ∈ {0, 1} t ∈ T (9.9)

This formulation is more suitable for a static robust optimization approach, where
we consider the worst possible realization for each row in the model. Each one of the
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Constraints (9.6)–(9.7), for a period t, now contains all the uncertain parameters
di with i = 1, . . . , t. Their probability distribution is unknown, but we assume
that each parameter belongs to the support interval [d̄t − d̂t, d̄t + d̂t], in what is
often called box uncertainty model. The uncertain demands can then be expressed
as dt = d̄t + d̂tζt, where d̄t is the nominal value, d̂t the maximum deviation and
ζt ∈ [−1, 1] is the scaled deviation of the demand in period t.

If the number of deviations is not bounded, for the t-th holding cost in (9.6),
the worst-case occurs when every demand in i = 1, . . . , t reaches its minimum (i.e.,
the realizations such that ζi = −1 ∀i ≤ t); while, for the t-th shortage cost in (9.7),
the worst-case is obtained with the maximum demand (ζi = 1 ∀i ≤ t). Indeed, we
could simply replace Constraints (9.6)–(9.7) with the following linear constraints:

yt ≥ ht

(
u0 +

t∑
i=1

(qi − (d̄i − d̂i))
)

t ∈ T (9.10)

yt ≥ −pt

(
u0 +

t∑
i=1

(qi − (d̄i + d̂i))
)

t ∈ T (9.11)

A concern about this kind of pure worst-case approach is that it seems highly
unlikely that all the parameters are going to reach their worst-case deviation si-
multaneously. To mitigate this drawback, it is possible to define a less conservative
uncertainty set in several ways. In the budget-of-uncertainty approach, the idea
is to restrict the uncertainty set by imposing a budget Γ that acts as a threshold
on the sum of absolute deviations. Let us then restrict our attention only to the
scaled deviation vectors ζ belonging to the uncertainty set defined as:

P = {ζ : |ζt| ≤ 1 ∀t ∈ T,
t∑
i=1
|ζi| ≤ Γt ∀t ∈ T},

that is, all the deviation vectors such that, for every interval [1, t], no more than
Γt parameters can reach their worst-case value (either the upper or lower bound)
simultaneously. A reasonable assumption for this approach is that Γt ≤ Γt+1:
having distinct and nondecreasing budget values avoids overprotecting the first
periods. It does not seem realistic that a larger amount of deviation can occur
in the first k � n periods as in the whole time horizon T = 1, . . . , n. Another
assumption that we can safely make is that Γt+1 − Γt ≤ 1 for all t ∈ T , since,
if only Γt deviations could occur in the first t periods, then no more that Γt + 1
should occur in the first t+ 1.

The uncertainty set P is the one also considered by Bertsimas and Thiele in
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[BT06]. Having defined P, we can write the following robust formulation:

min
∑
t∈T

ctqt +Ktzt + yt (9.12)

yt ≥ max
ζ∈P

[
ht

(
u0 +

t∑
i=1

(qi − (d̄i + d̂iζi))
)]

t ∈ T (9.13)

yt ≥ max
ζ∈P

[
−pt

(
u0 +

t∑
i=1

(qi − (d̄i + d̂iζi))
)]

t ∈ T (9.14)

0 ≤ qt ≤ Qtzt t ∈ T (9.15)
zt ∈ {0, 1} t ∈ T, (9.16)

where Constraints (9.13)–(9.14) ensure that yt is an upper bound to the cost ob-
tained for any ζ ∈ P.

Observe that the problem is well-posed and has finite value, since the nominal
problem is feasible for any ζ ∈ P. Given any feasible solution to the nominal
problem, since backlogging is allowed, then the occurrence of a demand smaller
or larger than expected cannot yield an infeasibility: given a production plan q,
an increase (decrease) in a demand dt can always be translated into a decrease
(increase) of the inventory ut, since ut can assume negative values. Therefore, the
uncertainty of the problem only affects the objective function value: the aim of the
robust counterpart is to minimize the worst-case cost, so as to provide an upper
bound on the cost for any realization of the parameters within the uncertainty set.

Note that both an increase or a decrease with respect to the nominal demand
may cause an increase in the overall cost. Since we have assumed symmetric de-
viations, it is easy to see that the worst-case cumulative deviation of the demands
is the same both for the t-th holding cost and for the t-th shortage cost, and can
be expressed as maxζ∈P

∑t
i=1 d̂iζi. Then, in order to compute such maximum cu-

mulative deviation, Bertsimas and Thiele in [BT06] propose the following auxiliary
LP:

At = max
t∑
i=1

d̂iζi (9.17)

t∑
i=1

ζi ≤ Γt (9.18)

0 ≤ ζi ≤ 1 ∀i ≤ t (9.19)

The problem is feasible and bounded, hence by strong duality its optimal cost is

150



9.2. Robust production planning

equivalent to the optimal value of its dual:

At = min νtΓt +
t∑
i=1

rit (9.20)

νt + rit ≥ d̂i ∀i ≤ t
νt ≥ 0
rit ≥ 0 ∀i ≤ t.

Due to the direction of the inequalities, the objective function of the dual problem
can be inserted directly in the holding/shortage constraints yielding the complete
formulation, which we will denote, from now on, by BT:

min
∑
t∈T

(ctqt +Ktzt + yt) (9.21)

yt ≥ ht

(
u0 +

t∑
i=1

(qi − d̄i) + νtΓt +
t∑
i=1

rit

)
t ∈ T (9.22)

yt ≥ −pt

(
u0 +

t∑
i=1

(qi − d̄i)− νtΓt −
t∑
i=1

rit

)
t ∈ T (9.23)

νt + rit ≥ d̂i ∀t, i ≤ t (9.24)
νt ≥ 0, rit ≥ 0 ∀t, i ≤ t (9.25)
0 ≤ qt ≤ Qtzt t ∈ T (9.26)
zt ∈ {0, 1} t ∈ T. (9.27)

This MILP formulation protects row-wise against all possible realizations in the
uncertainty set P. The optimal values At = ν∗t Γt +

∑t
i=1 r

∗
it represent the worst-

case deviation of the cumulative demand from its nominal value, subject to the
budget of uncertainty Γt.

Let us give a few remarks on this formulation. It is quite evident that the
optimal values At can be computed a priori as n linear programs (9.17)–(9.19),
hence no additional variables and constraints are needed. It is sufficient to replace
Constraint (9.22)–(9.23) with:

yt ≥ ht

(
u0 +

t∑
i=1

(qi − di) +At

)
t ∈ T (9.28)

yt ≥ −pt

(
u0 +

t∑
i=1

(qi − di)−At

)
t ∈ T. (9.29)

The robust problem we obtain is still a mixed-integer linear program. Nevertheless,
in general the problem is different from the original nominal formulation (9.1)-
(9.4), since we have inequalities with an extra term At that, in general, cannot be
transformed back into the original balance constraints. Bertsimas and Thiele show
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that, for the special case with uniform costs pt = p, ht = h, the robust problem is
equivalent to the original production planning problem with the modified demand
values:

d′t = d̄t + p− h
p+ h

(At −At−1), (9.30)

where A0 = 0, and an additional constant term 2ph
p+h

∑
t∈T At in the objective

function. Hence, in this case the complexity of the robust problem is exactly
equivalent to the nominal one. If the inventory also has a constant upper bound
U , they show that the parameters can be transformed into

Ut = U − 2p
p+ h

At, (9.31)

although, in this case, the problem is not equivalent to the original, since the upper
bound is no longer constant. Let us remark that these transformations are not valid
with non-uniform holding/shortage costs or inventory bounds.

9.2.1 A revised Γ-formulation
The formulation of Bertsimas and Thiele is unnecessarily conservative with respect
to P. The definition of the uncertainty set:

P = {ζ : |ζi| ≤ 1 ∀i ≥ 0,
t∑
i=1
|ζi| ≤ Γt ∀t ≥ 0}

implies that any realization of the vector ζ will satisfy the budget constraint∑t
i=1 |ζi| ≤ Γt for all t ∈ T . Formulation (9.17)–(9.19) only imposes the bud-

get Γt for a given t, but it does not impose the budget Γi for all the subintervals
[1, i] with 0 ≤ i < t. This does not invalidate the correctness of the formulation,
in the sense that we are still protecting against all possible realizations of ζ ∈ P –
however, this observation implies that the formulation is overprotecting, including
also scaled deviation vectors ζ which are not in P.

To see why this may happen, consider a period t > 1. Assume that Γt and Γt−1
are both integer, and Γt = Γt−1 +1. If d̂t is smaller than the Γt-th largest deviation
d̂j with j ∈ [1, t− 1], then the cumulative deviation At, according to (9.17)–(9.19),
will be At−1 + d̂j . This means that, on the t-th row, we are protecting against a
deviation vector where Γt demands in the interval [1, t− 1] reach their worst-case
value, exceeding the threshold Γt−1.

A revised robust formulation, which does not overprotect the first periods, fol-
lows quite naturally by simply applying the definition of P. We can write a revised
primal-dual pair for the maximum deviation up to a given period t as follows:
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Ht = max
t∑
i=1

d̂iζi (9.32)

i∑
j=1

ζj ≤ Γi ∀i ≤ t

0 ≤ ζi ≤ 1 ∀i ≤ t

Ht = min
t∑
i=1

(νitΓi + rit) (9.33)

t∑
j=i

νjt + rit ≥ d̂i ∀i ≤ t

νit ≥ 0, rit ≥ 0 ∀i ≤ t,

where the optimal values Ht represent the worst-case deviation of the cumulative
demand from its nominal value with ζ ∈ P. The associated robust formulation
becomes:

min
∑
t∈T

(ctqt +Ktzt + yt)

yt ≥ ht

(
u0 +

t∑
i=1

(qi − di) +
t∑
i=0

(νitΓi + rit)
)

t ∈ T

yt ≥ −pt

(
u0 +

t∑
i=1

(qi − di)−
t∑
i=0

(νitΓi + rit)
)

t ∈ T

t∑
j=i

νjt + rit ≥ d̂i ∀k, i ≤ k

νit ≥ 0, rit ≥ 0 ∀t, i ≤ t
0 ≤ qt ≤ Qtzt t ∈ T
zt ∈ {0, 1} t ∈ T

The problem requires additional continuous variables (O(n2) instead of O(n) dual
variables in BT), but even in this case it is possible to compute a priori the optimal
values Ht, as n linear programs, and substitute them in the formulation as follows:

min
∑
t∈T

(ctqt +Ktzt + yt) (9.34)

yt ≥ ht

(
u0 +

t∑
i=1

(qi − di) +Ht

)
t ∈ T (9.35)

yt ≥ −pt

(
u0 +

t∑
i=1

(qi − di)−Ht

)
t ∈ T. (9.36)

0 ≤ qt ≤ Qtzt t ∈ T (9.37)
zt ∈ {0, 1} t ∈ T (9.38)

In Example 9.1 we show an example where the formulation of Bertsimas and Thiele
leads to an overprotection, and compare it with the revised formulation. Observe
that, if the deviations d̂t are nondecreasing with t, the BT formulation and the
revised one are equivalent, since At = Ht ∀t ∈ T .
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Some of the results valid for formulation BT can be extended to the revised
formulation. In particular, if the cost coefficients are constant over time, it is still
possible to reformulate the robust problem as a nominal one with modified demands
computed as in Equation (9.30), with Ht in place of At.

Example 9.1. Consider an instance with 3 periods, T = {1, 2, 3}, and the following
nominal demands, deviations and budgets of uncertainty:

t d̄t d̂t Γt
1 6 4 1
2 6 4 1
3 3 1 2

With formulation BT (Eq. (9.21)–(9.27)), the worst-case cumulative deviation
for t = 1 is correctly computed to be A1 = 4. For t = 2, the number of deviations in
the interval [1, 2] is bounded by Γ2 = 1, so that A2 = 4. For t = 3, the formulation
protects against all the vectors such that ζ1 + ζ2 + ζ3 ≤ Γ3 = 2, including the
vector ζ = (1, 1, 0) /∈ P, which results in a maximum cumulative deviation A3 = 8.
Clearly, this is overconservative, since our starting assumption was that, since
Γ2 = 1, only one of the maximum deviations in the first two periods could occur1

With the revised formulation (9.34)–(9.38), the worst-case cumulative devia-
tions for t = 1 and t = 2 are the same, H1 = H2 = 4. In the third period, the
worst-case deviation satisfies at the same time:

ζ1 ≤ Γ1 = 1
ζ1 + ζ2 ≤ Γ2 = 1
ζ1 + ζ2 + ζ3 ≤ Γ3 = 2,

yielding a maximum cumulative deviation H3 = 5, for ζ = (1, 0, 1) or ζ = (0, 1, 1).
We are protecting row-wise against a realization of the demand vector which is
consistent with the assumed uncertainty set P.

Uncertainty set generalization

The definition of the uncertainty set P can be easily generalized by defining a
budget of uncertainty for any possible interval in T , and not only those starting
from period 1. If the demand parameters are expressed as di = d̄i + d̂iζi, we define
the uncertainty set by considering the scaled deviation vectors ζ that belong to
the set Q = {ζ : |ζi| ≤ 1 ∀i ≥ 0,

∑l
i=j |ζi| ≤ Γjl ∀(j, l) ∈ I} where I ⊆ {(j, l) ∈

T × T : j ≤ l}. In other words, we define a budget Γjl for each possible subset
of consecutive time periods. Then, the primal-dual pair for the maximum scaled
deviation problem up to a given period t reads:

1Note also that it is false that A3−A2 ≤ d̂3 and that A3−A2 ≤ d̄3, thus invalidating a minor
result (Lemma 3.4) in [BT06].
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max
t∑
i=1

d̂iζi

min(l,t)∑
i=j

ζi ≤ Γjl ∀(j, l) ∈ It

0 ≤ ζi ≤ 1 ∀i ≤ t

min
∑

(j,l)∈It

νtjlΓjl +
t∑
i=1

rti

rti +
∑

(j,l)∈It:
i∈[j,l]

νtjl ≥ d̂i ∀i ≤ t

νtjl ≥ 0, rti ≥ 0 ∀i ≤ t,
∀(j, l) ∈ It,

where It = {(j, l) ∈ I : j ≤ t}. In general, the fact that the cumulative devia-
tions Ht can be computed a priori gives great flexibility in the definition of the
uncertainty set, and it is possible to exploit knowledge domain to represent the
deviations in a more refined way.

9.2.2 Robust (l, S) inequalities
Let us now consider the robust lot-sizing problem where backlogging is not allowed.
Then, Constraints (9.36) become the nonnegativity constraints:

u0 +
t∑
i=1

(qi − d̄i)−Ht ≥ 0. (9.39)

We denote by XR−LS the polyhedron described by Constraints (9.35), (9.38)
and (9.39). A class of inequalities, in the spirit of (l, S) inequalities for the de-
terministic version, can be derived, if we assume that Γt ≥ Γt−1 ∀t ∈ T (thus
Ht ≥ Ht−1). Let us start from a basic valid inequality.

Lemma 9.2. For a given t ∈ T , the inequality of the form:

qt ≤ d̄tzt + u0 +
t∑

j=1
(qj − d̄j)−Ht−1, (9.40)

with H0 = 0, is valid for XR−LS.

Proof. With a simple algebraic manipulation, we have that:

u0 + d̄t − qt +
t∑

j=1
(qj − d̄j)−Ht−1 = u0 +

t−1∑
j=1

(qj − d̄j)−Ht−1 ≥ 0

where the inequality follows from Constraint (9.39). The inequality can be rewrit-
ten as

qt ≤ d̄t + u0 +
t∑

j=1
(qj − d̄j)−Ht−1. (9.41)

Then, the claim follows since zt ∈ {0, 1}.
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Observe that, by summing
∑l
j=t+1 qj to both sides of (9.41), we obtain:

l∑
j=t

qj ≤ d̄tl + u0 +
l∑

j=1
(qj − d̄j)−Ht−1. (9.42)

We can then generalize (9.40) in a way similar to what can be done for the deter-
ministic lot-sizing, obtaining a class of robust (l, S) inequalities.

Proposition 9.3. Let 1 ≤ l ≤ n, L = {1, . . . , l}, S ⊆ L and a = min{j ∈ S}, then
the following robust (l, S) inequality:

∑
j∈S

qj ≤
∑
j∈S

d̄jlzj + u0 +
l∑

j=1
(qj − d̄j)−Ha−1, (9.43)

with H0 = 0, is valid for XR−LS.

Proof. Consider a feasible point (q, z). If
∑
j∈S zj = 0, then qj = 0 for j ∈ S, and

the inequality is satisfied since Hl ≥ Ha−1 by assumption and u0 +
∑l

1(qj − d̄j)−
Hl ≥ 0 by Constraint (9.39). Otherwise, let b = min{j ∈ S : zj = 1}. Then:

∑
j∈S

qj ≤
l∑

j=b
qj ≤ d̄bl+u0+

l∑
j=1

(qj−d̄j)−Hb−1 ≤
∑
j∈S

d̄jlzj+u0+
l∑

j=1
(qj−d̄j)−Ha−1,

where the first inequality follows from the definition of S and the nonnegativity
of qj , the second from (9.42), and the third from zb = 1 and Hb−1 ≥ Ha−1, since
b ≥ a.

Given a (q∗, z∗) solution to the LP relaxation, the separation problem can be
solved by considering the inequality rewritten as:∑

j∈S
d̄jlzj +

∑
j∈L\S

qj ≥ d̄1l +Ha−1 − u0. (9.44)

Then, for each L = {1, . . . , l} with l ∈ {1, . . . , n}, the set S minimizing the left-
hand side is S = {j ∈ L : q∗j > d̄jlz

∗
j }, and the inequality is violated if the quantity∑

j∈L min{q∗j , d̄jlz∗j } is smaller than d̄1l +Ha−1 − u0.

Numerical example

Let us show with a brief example that the valid (l, S) inequalities (9.43) can have
a significant impact solving the robust production planning problem defined by
Equations (9.34), (9.35), (9.37), (9.38) and (9.39). We consider an instance with
n = 70, with the demand profile in Figure 9.1, Qmaxt = 100, the time-varying costs:

ct =
{

6 19 ≤ t ≤ 53
5 t ≤ 18 ∨ t ≥ 54,

ht =
{

4 19 ≤ t ≤ 53
4 t ≤ 18 ∨ t ≥ 54,
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Figure 9.1: Demand profile and uncertainty interval (d̄t ± d̂t) for the considered
instance.

and the budgets of uncertainty computed as Γt = 0.5
√
t ∀t ∈ T .

Table 9.1 reports the linear programming bound with and without the intro-
duction of the robust (l, S) inequalities. The valid inequalities yield a remarkable

Valid inequalities bound gap

None 19815.774 25.95
Robust (l, S) 24945.375 0.05

Table 9.1: Linear programming bound and relative gap with and without robust
(l, S) inequalities (optimal value 24959.167).

improvement of the linear programming bound with respect to the original formu-
lation, which is more than 25% from the optimal value. Note that this is due to
the fact that the activation Constraints (9.37) cause a very weak relaxation, unless
strengthened. In Table 9.2 we report the results obtained with a full branch-and-
cut algorithm. The solver we use is Gurobi 5.6, with default settings (all the generic
MIP cutting planes are enabled). The separation algorithm is implemented in the
Julia language via the JuMP library. The table reports the number of explored

Valid inequalities nodes time generated cuts

robust (l, S) default MIP cuts

None 832 2.48 – 105
Robust (l, S) 2 0.96 69 70

Table 9.2: Solving to optimality with and without robust (l, S) inequalities.
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nodes, the computing time, the number of robust (l, S) inequalities that we sepa-
rate and the number of generic MIP cuts separated by Gurobi2. The robust (l, S)
inequalities appear to be very effective in reducing the computing time and the
number of explored nodes, even with only 69 generated inequalities.

9.3 Robust operational planning in cogeneration
systems

Let us now turn to the operational planning problem with single-item, single-
unit discussed in Section 8.1. We consider the linear variant, where we have the
production variables qt with production costs ct > 0 and fixed costs Kt > 0, while
there are no holding costs on the inventory ut, which has an upper bound U and
must be nonnegative. The nominal formulation is as follows:

min
∑
t∈T

ctqt +Ktzt (9.45)

ut−1 + qt = ut + dt t ∈ T (9.46)
0 ≤ ut ≤ U t ∈ T (9.47)
Qmint zt ≤ qt ≤ Qmaxt zt t ∈ T (9.48)
zt ∈ {0, 1} t ∈ T. (9.49)

In this case, note that, given a production plan q∗, a variation in the demands
dt does not affect the cost, but may introduce an infeasibility. Similarly to what
we have described in the previous section, we can project out the ut variables and
work only in the space of the production variables qt. Then, we can reformulate
the problem in a way that is more suitable for a robust approach, obtaining:

min
∑
t∈T

ctqt +Ktzt (9.50)

u0 +
t∑
i=1

(qi − di) ≥ 0 t ∈ T (9.51)

u0 +
t∑
i=1

(qi − di) ≤ U t ∈ T (9.52)

Qmint zt ≤ qt ≤ Qmaxt zt t ∈ T (9.53)
zt ∈ {0, 1} t ∈ T. (9.54)

This formulation is close to formulation (9.5)–(9.9), with ht = 0, the shortage
cost replaced by the nonnegativity constraint, and an upper bound on ut. Let
us consider again the budget-constrained uncertainty set P = {ζ : |ζi| ≤ 1 ∀i ≥

2In particular, for this problem Gurobi generates Gomory and flow cover cuts.

158
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1,
∑t
i=1 |ζi| ≤ Γt ∀t ≥ 0}. Following the revised approach, the robust version of

the problem is:

min
∑
t∈T

(ctqt +Ktzt) (9.55)

u0 +
t∑
i=1

(qi − d̄i)−Ht ≥ 0 t ∈ T (9.56)

u0 +
t∑
i=1

(qi − d̄i) +Ht ≤ U t ∈ T (9.57)

Qmint zt ≤ qt ≤ Qmaxt zt t ∈ T (9.58)
zt ∈ {0, 1} t ∈ T, (9.59)

where the valuesHt are computed a priori as in (9.32). Note that, since there are no
holding costs involved, we can actually compute modified demands and inventory
upper bounds to formulate the robust problem with Formulation (9.45)–(9.49).

Proposition 9.4. The optimal solution for Formulation (9.55)–(9.59) is equiva-
lent to the optimal solution of the nominal problem (9.45)–(9.49) with the modified
demand:

d′t = d̄t +Ht −Ht−1, (9.60)

where Ht is the cumulative deviation of the demands at period t and H0 = 0, and
the modified inventory upper bound on the stock variables ut:

Ut = U − 2Ht. (9.61)

Proof. The transformed nominal problem follows the balance equation ut−1 + qt =
ut + d′t, with 0 ≤ ut ≤ Ut and d′t = d̄t + Ht −Ht−1. Then, ut = ut−1 + qt − d′t =
u0+

∑t
i=1(qi−d′i) = u0+

∑t
i=1(qi−d̄i)−

∑t
i=1(Hi−Hi−1) = u0+

∑t
i=1(qi−d̄i)−Ht.

From 0 ≤ ut ≤ Ut follows that, for any t ∈ T , u0 +
∑t
i=1(qi − d̄i) −Ht ≥ 0 and,

according to the definition of Ut, u0 +
∑t
i=1(qi− d̄i) +Ht ≤ U . Since the objective

functions are the same, the two problems are equivalent.

Note that the modified problem is not exactly equivalent to the original one,
since the inventory bound is no longer constant. However, this proposition allows
us to extend the majority of the results for the nominal problem to the robust case.
In particular, the problem is polynomially solvable if the production bounds Qmint

and Qmaxt are constant (see Section 8.1.3).

Probability bounds of constraint violations

An interesting feature of the Γ-robustness approach is that it also allows us to
establish upper bounds on the probability that the t-th Constraint (9.52) is violated.
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Given an optimal solution q∗, the probability that the inventory upper bound is
exceeded can be bounded as follows:

Pr

(
u0 +

t∑
i=1

(q∗i − di) > U

)
= Pr

(
u0 +

t∑
i=1

(q∗i − d̄i + d̂iζi) > U

)
≤

Pr

(
t∑
i=1

d̂iζi > Ht)
)

= Pr

(
t∑
i=1

d̂i

maxj d̂j
ζi >

Ht

maxj d̂j
)
)
≤

Pr

(
t∑
i=1

γiζi ≥
Ht

maxj d̂j
)
)

(9.62)

where γi = d̂i

maxj d̂j
and the first inequality follows from the fact that q∗ satisfies

u0 +
∑t
i=1(q∗i − d̄i) +Ht ≤ U (Eq. (9.57)). Since γi ≤ 1, assuming that ζi are i.i.d.

random variables in [−1,+1], we can obtain a probabilistic bound applying, e.g.,
the following result3:

Theorem 9.5 ([BS04]). If ζi, i = 1, . . . , t, are independent and symmetrically
distributed random variables in [−1,+1], then

Pr

(
t∑
i=1

γiζi ≥ N)
)
≤ exp

(
−N2

2t

)
.

An equivalent bound can be obtained also for the t-th nonnegativity constraint.
It is worth pointing out that, since the random variables ζj in different constraints
are not independent, a meaningful bound on the probability that none of the con-
straint is violated cannot be simply obtained as

∏
t∈T

(
1− Pr

[
u0 +

∑t
i=1(qi − di) > U

])
.

9.3.1 Uncertainty in the objective function
Let us now consider what happens in the case where the cost vector c is subject
to data uncertainty. This is a relevant issue when dealing with longer time hori-
zons: as an example, electrical energy prices in liberalized markets may be subject
to significant fluctuations over time, and the same can happen to fuel/gas price.
However, uncertainty in the cost coefficients can be important also in short-term
planning: the efficiency of each cogeneration unit is affected by the environmental
conditions (especially the temperature), thus affecting the final production cost.

Let us assume that the cost coefficients can be expressed as ci = c̄i+ ĉi · ζi with
the uncertainty set defined by the vectors ζ that belong to the set:

R = {ζ : |ζi| ≤ 1 ∀i ≥ 0,
t∑
i=1
|ζi| ≤ Γ}.

3A stronger bound, which we do not report for sake of brevity, can be obtained by applying
Theorem 3 in [BS04]
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Observe that, in this case, a single budget of uncertainty Γ is sufficient. The worst-
case occurs where the cost coefficients are maximized, thus the robust formulation
is the following:

min max
ζ∈R

∑
t∈T

((c̄t + ĉtζt)qt +Ktzt) (9.63)

ut−1 + qt = ut + dt t ∈ T (9.64)
0 ≤ ut ≤ U t ∈ T (9.65)
Qmint zt ≤ qt ≤ Qmaxt zt t ∈ T (9.66)
zt ∈ {0, 1} t ∈ T (9.67)

which, by strong duality, can be rewritten as:

min
∑
t∈T

(c̄tqt +Ktzt + σΓ +
∑
i∈T

ρi) (9.68)

ut−1 + qt = ut + dt t ∈ T (9.69)
0 ≤ ut ≤ U t ∈ T (9.70)
σ + ρi ≥ ĉiqi ∀i ∈ T (9.71)
Qmint zt ≤ qt ≤ Qmaxt zt t ∈ T (9.72)
σ ≥ 0, ρi ≥ 0 ∀i ∈ T (9.73)
zt ∈ {0, 1} t ∈ T (9.74)

where σ and ρi are the dual variables associated with, respectively, the budget
constraint and the upper bounds on ζi. Notice that, in this case, it is not possible
to compute a priori the worst-case deviation. A similar reformulation can also be
applied for uncertainty in the fixed costs Kt, and they can be combined with the
formulations for uncertainty in the right-hand side.

9.4 Computational experiments
In this section, we summarize some computational results that show, for the single-
item single-unit case, how the choice of the Γ-robustness parameters for the right-
hand side affects the cost and the feasibility of the optimal plans in the realizations.
We first consider the case of a general production planning problem with backlog-
ging, where the uncertainty only affects the cost of the plan. Then, we consider
the operational planning problem, where the demand uncertainty threatens the
feasibility of the chosen plan. In both cases, we show the difference between the
BT approach and our revised formulation.

9.4.1 Production planning
Let us consider the case of a production planning problem with backlogging (Sec-
tion 9.2). Since no bounds are imposed on the inventory variables ut (that can also
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Chapter 9. Robust optimization for production and operational planning

be negative), any plan q∗ will always be feasible in any realization of the demands.
However, the holding and shortage costs, that contribute to the cost of the chosen
plan, will be greatly affected by the actual demand.

The results summarized in this section have been obtained with a realistic
instance of n = 50 time periods, with the demand profile in Figure 9.2: the dark
line corresponds to the nominal demands d̄t, while the filled area represents the
deviations d̂t. In particular, we assume a high demand and high variance (d̂t = 5)
during the central periods, while in the initial and final part of the horizon we
assume a low demand with low variance (d̂t = 1). The other parameters in the
instance are:

ct =
{

6 14 ≤ t ≤ 38
5 t ≤ 13 ∨ t ≥ 39,

ht =
{

4 14 ≤ t ≤ 38
3 t ≤ 13 ∨ t ≥ 39,

pt = ht + 20,

Kt = 120, and Qt = 100 ∀t ∈ T . Note that backlogging is possible, but is greatly
penalized with the cost pt. To choose the values of Γt, [BT06] shows that, under

10 20 30 40 50
t

10

15

20

25

30

35

40

Figure 9.2: Demand profile and uncertainty interval (d̄t ± d̂t) for the considered
instance

some assumptions, the optimal value of the parameters Γt is proportional to
√
t;

then, we select their value, for each time period t, according to the equation:

Γt = α
√
t ∀t ∈ T,

where the parameter α represents the level of protection that we impose.
The experiments are carried out as follows. First, in the optimization phase,

the robust formulation is solved with α ∈ [0, 2]. Note that, for α = 0, all Γt take
value 0 and the model is the nominal one, with Ht = 0 ∀t ∈ T . Then, in order
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9.4. Computational experiments

to evaluate the obtained plans, we generate 1000 realizations, assuming that each
dt is distributed as a normal variable with mean µ = d̄t and standard deviation
σ = d̂t

2 .
Figure 9.3 reports the optimal costs obtained in the optimization phase (red

line) and the distribution of the actual costs in the realizations (average and stan-
dard deviation in blue). We also include results obtained with Formulation BT,
corresponding to the dashed lines.

If the values of Γt are sufficiently large, the optimal cost of the robust formula-
tion provides an upper bound on the actual cost in any realization. However, the
robust plan gives, in principle, no indication of the expected value of the realiza-
tions.

The average realization cost is larger than the optimization result for α < 0.3,
suggesting that the protection level is not sufficient. For α = 0, that is, the
nominal case, the overall cost in the realization is, on average, almost 50% greater
than the value obtained from the optimization. Observe also how the deviation
is large and that almost all the realizations fall above the expected cost. Raising
α, the value obtained in the optimization phase provides an upper bound which is
valid with increasingly high probability. The plot shows that the robust approach
allows us to obtain the best results in terms of average cost if α is around 0.5.
Further raising α gives no advantage: the upper bound gets considerably weaker,
the actual cost of the realizations is worse on average, and the variance of the
overall cost in the realization does not decrease. Comparing the two formulations,
the revised approach provides a tighter upper bound, and optimal plans with a
slightly superior performance in practice, although the difference seems to be small
for the considered instance.

9.4.2 Operational planning
In the case of operational planning, the cost of the plan is determined by solving
the robust version of the problem, and is not modified by the realization of the
parameters, since there are no holding costs, and shortages are not allowed. Then
the focus is exclusively on the constraint violations.

The instance we use in the experiments has the same production costs and de-
mand profile of the one described in the previous section. In addition, the storage
(inventory) has an upper bound U = 200. We evaluate the plans over 1000 real-
izations obtained as previously described, and we experiment again with values of
Γt growing as the square root of t:

Γt = α
√
t ∀t ∈ T.

Figure 9.4 summarizes how the feasibility of the robust plans changes as α is
increased. In particular, we report, in red, the number of realizations where the
inventory constraints were not satisfied, and, in blue, the percentage increase in
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Figure 9.3: Upper bound obtained with the RO formulations (red line) and average
± standard deviations of the actual costs in 500 realizations with budget of
uncertainty Γt = α

√
t.

the cost of the robust plan with respect to the cost of the nominal version (α = 0).
Note that, in this case, the cost of a plan is exactly determined by solving the
robust problem, since, given a production plan q, the objective function does not
depend on the actual realization of the demands.

The optimal plan obtained with nominal parameters (α = 0) is quite fragile,
in the sense that it fails to satisfy the constraints in more than 50% of the real-
ization. If we want all the constraints to be satisfied in any realization (or with
high probability), it is necessary to be slightly more aggressive than in the case
with backlogging. Indeed, avoiding failures (violations of the bounds) with prob-
ability close to 1 requires a rather conservative approach, with α larger than 0.7.
Nevertheless, the extra cost of the robust plan is acceptable, as it is well below 2%.

Compared to the BT approach, the revised formulation gives comparable results
with respect to the fraction of failures in the realizations. Observe, however, that
the cost of the BT plan, which is more conservative, can be significantly larger,
even more than 1% for large protection levels.

It is worthwhile observing that the value of the storage capacity is crucial in
determining even the existence of a plan which is robust against a given uncer-
tainty set: indeed, we can view the inventory as a buffer that protects against
uncertainties. Let us apply again the robust approach to the same instance, but
decreasing the storage capacity to U = 40, instead of U = 200. Figure 9.5 shows
that, with Γt = α

√
t, no robust plans exist with α > 0.5 for BT and with α > 0.6 for
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Figure 9.4: Percentage of realizations where the robust plan is infeasible (red)
and additional cost of the robust plan with respect to the nominal one (blue),
with Γt = α

√
t and U = 200. The steep cost increase for α ≈ 0.7 is due to an

increase in the number of production periods, hence incurring extra fixed cost
(Kt � ct).

the revised formulation4. For both formulations, the most robust plan that can be
achieved still has a significant failure rate (almost 10% for the revised formulation).

In a way, this tells us something about the robustness of the system itself.
It would actually be useful, then, to formulate a problem where the operational
planning and the design decisions are combined, so as to determine jointly the
schedule and the optimal design of the system which minimizes the overall cost,
while ensuring protection against the uncertainty set. This could be done in a quite
straightforward way, adding a term in the objective function which is proportional
to the size of the installed storage tank, or integer variables if, e.g., one can choose
only among a finite set of storage tank models/sizes.

9.4.3 Concluding remarks
In this chapter, we have discussed a revised version of the Γ-robust formulation for
production planning problems proposed in [BT06]. We have also described a family
of robust (l, S) inequalities that are valid for the robust formulation of general
production planning problems, when backlogging is not allowed. The approach is of
interest to us because it can be easily extended to the operational planning problem.
An attractive feature is that, for the single-unit, single-item operational planning

4In the sense that the robust formulation is infeasible.
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Figure 9.5: When the inventory capacity is reduced to U = 40, robust plans that
guarantee a high protection level do not exist.

problem with uncertainty in the right-hand side, the approach leads to a problem
which has almost exactly the same structure of the nominal one. This property is
not preserved when uncertainty affects the objective function coefficients.

We have also summarized some computational experiments that show the be-
havior of the robust formulations with various degrees of protection. Note that
we have not discussed the optimal choice of the robust parameters Γt, which is a
fundamental issue in itself. Future work may also include the extension of the ap-
proach to multiple-item, multiple-units variants; in particular, it seems worthwhile
investigating in which cases it remains possible to obtain a robust solution just by
modifying some of the parameters of the nominal problem.
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CHAPTER10
MIP-based approaches for a real-world

application

In this chapter we describe a real-world application where we apply mixed-integer
programming methods to a short-term operational planning problem. First, we
give some details on the components of the systems that we consider. Then, we
describe a complete mixed-integer nonlinear programming formulation, including
detailed technical constraints, and describe how we can deal with nonlinearities
in practice, by using a piecewise linear approximation. Moreover, since it is often
useful to extend the operational planning problem to cases with a larger number
of time periods, we propose a rolling-horizon MILP-based heuristic to tackle large-
size instances from an Italian energy company, where yearly incentives have to be
considered. Some of the results in this chapter can be found in [TABM15, TAMB15,
BTM+14].

10.1 Real-world energy cogeneration systems
Real-world cogeneration systems can vary substantially in terms of number and
types of units as well as in terms of scale, ranging from small scale plants (domestic
applications with < 50 kW fuel input) to large scale ones (industrial applications
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with >100 MW fuel input). Cogeneration energy systems may involve the following
types of cogeneration units:

- One-degree-of-freedom cogeneration units that simultaneously generate elec-
tric and termal power, e.g., gas turbines, internal combustion engines, back-
pressure steam cycles, fuel cells.

- Two-degree-of-freedom cogeneration units that simultaneously generate elec-
tric and thermal power (depending on two operating variables). This class in-
cludes, for instance, gas turbines with supplementary firing in the heat recov-
ery section, steam cycles with extraction-condensing turbine, combined cycles
with supplementary firing in the Heat Recovery Steam Generator (HRSG)
and back-pressure bottoming cycle.

Cogeneration systems may also include single-item generation units such as:

- boilers (i.e., one-degree-of-freedom units generating only heat from fuel),

- compression heat pumps (i.e., one-degree-of-freedom units generating only
heat from electricity),

- compression chillers (i.e., one-degree-of-freedom units generating only refrig-
eration power from electricity),

- absorption chillers (i.e., one-degree-of-freedom units generating only refriger-
ation power from heat).

With these types of units, we account for a wide variety of cogeneration systems,
involving units with multiple degrees of freedom (two or more operating variables)
and different size.

Figure 10.1 gives a schematic representation of a cogeneration system compris-
ing multiple cogeneration and generation units as well as networks for the distri-
bution of electric power, refrigeration power, high and low temperature thermal
power. For instance, the HT heat network allows to model a steam network for
an industrial heat user, while the LT heat network accounts for a district heating
network. Storage tanks can be connected to the heat networks as well as to the
refrigeration power network. The electric power generated by the units can be
used to fulfill the customers’ demands and, at the same time, drive the compres-
sion heat pumps and compression chillers, and satisfy the electricity needs of the
absorption chillers. Electric power can be sold/purchased to/from the electric grid.
The HT and LT heat networks are interconnected in order to have the possibility
to downgrade high-temperature heat down to the low temperature heat network.
Finally, thermal power in excess can, if needed, be dissipated through a dedicated
heat exchanger.
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Figure 10.1: Schematic representation of a CCHP network connecting the
(co)generation units with the storage tanks, the electric grid and the users. Red
and yellow arrows represent, respectively, the high (h) and low-temperature (l)
thermal power flows, light blue arrows represent the refrigeration power flows
(q), blue dotted arrows represent the electric power (e), and the black ones the
fuel (f) consumed by each unit.

10.2 MINLP formulation

As seen in Chapter 8, the short-term operational planning of cogeneration systems
can be modelled as a mixed-integer nonlinear problem. Let us now describe in
detail the model for a real-world application, starting from the parameters and
variables. Then, we will give a MINLP formulation, and describe a piecewise-
linear approximation that we can use in practice to approximate the nonlinear
functions, when solving directly the MINLP is not possible.

Sets and parameters

T : set of time periods (hours)
U : set of all generation units
F : set of units consuming fuel
E : set of units consuming electricity
C: set of units that generate refrigeration
H: set of units that generate high-temperature heat
L: set of units that generate low-temperature heat
G: set of units that generate electricity
cOM
i : hourly operation and maintenance cost for unit i [e]
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cδi : start-up cost for unit i [e]
cfi : unit cost of fuel consumed by unit i [e/kWh]
bt: unit price of electricity bought from the grid at time t [e/kWh]
pt: unit price of electricity sold to the grid at time t [e/kWh]
Fminit , Fmaxit : minimum and maximum fuel input for unit i ∈ F at time t
[kWh]
Eminit , Emaxit : minimum and maximum electricity input for unit i ∈ E [kWh]
Ni: maximum number of start-ups for unit i
U, V,W : capacity of low/high-temperature heat and refrigeration storage
[kWh]
α, β, γ: constant deterioration rate for thermal and refrigeration storage
Dlow
t , Dhigh

t , Dcold
t , De

t : demand for low and high-temperature heat, refriger-
ation power, electricity at time t [kWh]

Decision variables

fit: fuel consumed by unit i ∈ F in period t [kWh]
yit: secondary fuel consumed by unit i ∈ F with post-firing injection [kWh]
xit: extraction valve opening percentage for combined cycle units [%]
econsit : electricity consumed by unit i ∈ E in period t [kWh]
egenit : electricity generated by unit i ∈ G in period t [kWh]
lit: low-temperature heat generated by unit i ∈ L in period t [kWh]
hit: high-temperature heat generated by unit i ∈ H in period t [kWh]
hdownt : high-temperature heat downgraded to low-temperature in period t

[kWh]
qit: refrigeration energy generated by unit i ∈ C in period t [kWh]
e−t : electricity sold to the grid in period t [kWh]
e+
t : electricity bought from the grid in period t [kWh]
ut: high-temperature thermal energy stored at the beginning of period t

[kWh]
vt: low-temperature thermal energy stored at the beginning of period t [kWh]
wt: refrigeration energy stored at the beginning of period t [kWh]
zit: binary variable, on/off status of unit i in period t
δit: binary start-up variable (δit = 1 if unit i is switched on at beginning of
period t)

Using these sets, parameters and decision variables the short-term cogeneration
systems planning problem can be formulated as the following MINLP:

min
∑
t∈T

(∑
i∈U

cOM
i zit +

∑
i∈U

cδi δit +
∑
i∈F

cfi fit + bte
+
t − pte−t

)
(10.1)
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s.t.
∑
i∈G

egenit −
∑
i∈E

econsit + e+
t − e−t = De

t ∀t ∈ T (10.2)

∑
i∈H

hit − hdownt + (ut −
ut+1

1− α ) ≥ Dhigh
t ∀t ∈ T , i ∈ U (10.3)

∑
i∈L

lit + hdownt + (vt −
vt+1

1− β ) ≥ Dlow
t ∀t ∈ T , i ∈ U (10.4)

∑
i∈C

qit + (wt −
wt+1

1− γ ) ≥ Dcold
t ∀t ∈ T , i ∈ U (10.5)

zitF
min
it ≤ fit ≤ zitFmaxit ∀t ∈ T , i ∈ F (10.6)

zitE
min
it ≤ econsit ≤ zitEmaxit ∀t ∈ T , i ∈ E (10.7)

Performance constraints ∀t ∈ T , i ∈ U (10.8)∑
t∈T

δit ≤ Ni ∀t ∈ T , i ∈ U (10.9)

δit ≥ zit − zit−1 ∀t ∈ T , i ∈ U (10.10)
egenit , hit, lit, qit, h

down
t , e+

t , e
−
t ≥ 0 ∀t ∈ T , i ∈ U (10.11)

0 ≤ ut ≤ U, 0 ≤ vt ≤ V, 0 ≤ wt ≤W ∀t ∈ T (10.12)
0 ≤ δit ≤ 1, zit ∈ {0, 1} ∀t ∈ T , i ∈ U (10.13)

The aim is to minimize the operational costs minus the revenue obtained by
selling extra electricity to the grid. In the objective function (10.1), we consider
unit-dependent fuel costs cfi . Start-up penalties cδi account for the extra cost due to
the the warm-up phase. The fixed cost cOM

i accounts for Operation and Maintenance
costs proportional to the number of working hours. It can include the cost of staff
needed to operate and maintain the unit, or machine deterioration costs.

Constraints (10.2) are balance equations for electricity. The net amount of
electric power, either generated or bought, must satisfy the demand De

t for period
t. Note that some units generate electric power, while others consume electricity.
It is necessary to separate energy that is purchased from the power grid, e+

t , from
the one that is sold, e−t , since their price is different. Constraints (10.3) are balance
constraints for high-temperature heat. The requirement Dhigh

t for period t must be
covered by the generated high-temperature heat and/or by that which is available
in the storage (ut). High-temperature heat can be downgraded to low-temperature.
Thermal energy can be stored in the tank for the next period, as long as the capacity
U is not saturated. Accordingly, the stored energy at the beginning of the following
period will be:

ut+1 = min
{
U, (1− α)

(∑
i∈H

hit − hdownt + ut −Dhigh
t

)}
,

where α ∈ [0, 1) is the constant deterioration rate for high-temperature heat. Ther-
mal energy in excess can always be dissipated with no additional costs. Similarly,
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Constraints (10.4) are balance constraints for low-temperature heat, where we also
include the high-temperature heat that has been downgraded to low-temperature
one. Constraints (10.5) are balance constraints for the refrigeration units. Con-
straints (10.6) and (10.7) ensure that the operating variables for a unit i (fuel, con-
sumed electricity) are within the technical minimum and maximum. Constraints
(10.8), that model the nonlinear behaviour of the generation units, are described
in detail in the next paragraph. Constraints (10.9) and (10.10) limit the number
of startups in a day. Finally, Constraints (10.11)-(10.13) impose lower and upper
bounds, and integrality for variables zit. The integrality of variables δit is implied
by Constraints (10.10) and the direction of the optimization.

Nonlinear performance constraints We have seen in Chapter 8 that each unit
can described in terms of nonlinear functions git(·), usually continuous and non-
decreasing, that map one or more operating variables (fuel, consumed electricity,
supplementary fuel) to an output variable (low or high-temperature heat, refriger-
ation power, electric power). The performance curves are, in general, non-convex
and time-varying due to the non-negligible temperature effect in each period t. In
addition, if unit i ∈ U is off, its output has to be 0. Thus, the corresponding out-
put variables are semi-continuous. The performance constraints for the generation
units can then be expressed as equations of the form:

ζ = zitgit(θ)

where θ is the vector of input variables, and ζ an output variable. The equation
can be relaxed, obtaining an inequality, if it is not necessary to consider explicitly
the amount of energy that is dissipated:

ζ ≤ zitgit(θ). (10.14)

In the case of generation or cogeneration units with one degree of freedom, each
performance curve git will be a function of one variable (θ is scalar). For instance,
given a high-temperature auxiliary boiler, the output variable is high-temperature
thermal power hit, while the only operating variable is fuel fit. The feasible region
for hit will be {0} ∪ [git(Fminit ), git(Fmaxit )].

In the case of cogeneration units with more degrees of freedom, the performance
curves are functions of two or more operating variables (θ is a vector). Two exam-
ples are combined cycles with extraction valve regulation (left) and gas turbines
with post-firing (right):

lit ≤ zitglit(fit, xit)
hit ≤ zitghit(fit, xit)
egenit ≤ zitgeit(fit, xit)

(10.15)


lit ≤ zitglit(fit, yit)
hit ≤ zitghit(fit, yit)
egenit ≤ zitgeit(fit, yit)

(10.16)
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Figure 10.2: (a) Useful effect (electric and thermal power) of a fuel cell unit
as a function of consumed fuel. Note that the concavity is different: at larger
loads the thermal efficiency increases, while the electrical efficiency decreases.
The performance curves are derived from the data of a commercially available
machine. (b) Heat as a function of fuel and extraction valve opening percentage
for a natural gas combined cycle. Heat production is 0 when the valve is closed,
and it increases with fuel when the valve is opened. Data obtained via simulation
with the dedicated software Thermoflex [The14].

where the operating variables are the fuel quantity fit, the valve opening percentage
xit ∈ [0, 0.4] for the combined cycle (10.15) and the supplementary fuel yit for the
gas turbine (10.16). The variable yit has a positive cost that must be added to the
objective function, and must satisfy an additional technical constraint yit ≤ a+dfit
with a, d ≥ 0.

Piecewise linear approximation Nowadays, several global solvers able to deal
with nonconvex MINLPs are available. However, computational results for rela-
tively simple scenarios of the short-term operation planning problem indicate that
even small-size instances can be very challenging for a MINLP solver, as we show
in [TABM15]. The additional constraints and (binary) variables needed to cap-
ture additional typical features, would likely make the MINLP models even harder
to solve. An alternative approach consists in approximating the nonlinear perfor-
mance functions with piecewise linear functions, see e.g. [BTM+14] or [ZLL+13],
obtaining a more tractable Mixed-Integer Linear Program (MILP). The piecewise
linear approximation of 1-d.o.f. performance functions is rather straightforward,
as it is sufficient to select a set of discretization points on a line, and connect them
via line segments. For 2-d.o.f. units the approximation involves functions of two
variables. Several approaches are available for approximating 2-D functions, dif-
fering considerably in terms of accuracy of the approximation and computational
cost of the resulting MILP. In our model, we consider the so-called lambda (or
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triangle) method described, e.g., in [LW01] and [DLM10], that is implemented by
triangulating the domain of the nonlinear function. Then, the value in a point x is
computed as the convex combination of the function values in the vertices of the
triangle containing x. This method requires the introduction of O(n1× n2) binary
variables, where n1 and n2 are the number of discretization points per dimension.

10.3 Computational experiments with MINLP and
MILP formulations

Let us now summarize computational experiments so as to compare the MINLP
formulation with the approach based on the piecewise-linear approximation of the
nonlinear functions. Given the wide variety of cogeneration systems, ranging from
small to large scale, in our experiments we consider two scenarios: a domestic ap-
plication (first scenario) with a few small-size cogeneration units, and an industrial
application (second scenario) with a considerable number of larger-size cogenera-
tion units.

10.3.1 Scenario 1
The first scenario is a micro-cogeneration system designed to provide thermal
power, refrigeration power and electricity to a 2, 000 m2 building. More in de-
tail, the building has the following power requirements: high-temperature thermal
power (hot water above 60 ◦C) for domestic hot water; low temperature thermal
power (hot water 35 − 45 ◦C) for heating; refrigeration power for air conditioning
during summer period; electric power. The cogeneration system is made of the
following units:

• a Solid Oxide Fuel Cell (SOFC) using natural gas to cogenerate up to 30kW
and 15kW of, respectively, electric and thermal power;

• a Heat Pump (HP) using electric power to generate low temperature heat by
"pumping" heat from ambient temperature up to 35-45 ◦C. It generates about
130kW at nominal conditions, but it is very sensitive to ambient temperature.

• an Auxiliary Boiler (AB) burning natural gas to generate up to 100kW of
high-temperature heat;

• a thermal storage system to store up to 100kWh of high-temperature heat
energy.

Figure 10.2 shows the performance curves of the SOFC units, i.e., the useful effects,
heat and electric power as a function of the fuel input. Due to the fact that the
thermal and electric request may have independent time profiles, the heat storage
tank is essential in order to allow the cogeneration system to generate extra electric
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power (to be sold to the grid) when the selling price is higher without wasting the
cogenerated heat (which will be stored and used when needed). The auxiliary
boiler is included in the system mainly as a backup and it is capable to fulfill the
requirement peaks of both high and low temperature heat.

10.3.2 Scenario 2

The second scenario is a large scale cogeneration system providing heat to a district
heating network. The requirement is thermal power at one level of temperature,
about 90 ◦C, while the whole electricity production is sold to the electric grid. The
cogeneration system includes one or more of the following units1:

• Gas Turbines (GT) with heat recovery, burning natural gas to generate up
to about 10MW of heat and 5.5MW of electricity;

• Gas Turbines (GT-2) with supplementary firing and heat recovery, burning
natural gas to generate up to about 40MW of heat and 11MW of electricity;

• Natural Gas Combined Cycles (NGCC) with a bottoming back-pressure steam
turbine, burning natural gas to generate up to 30MW of heat and 45MW of
electricity;

• Natural Gas Combined Cycles (NGCC-2) with a bottoming extraction-type
steam turbine, burning natural gas to generate up to about 70MW of heat
and 30MW of electricity;

• Auxiliary Boilers (AB) burning natural gas to generate up to about 40MW
of heat;

• a thermal storage system to store up to 50MWh of high-temperature heat
energy.

The thermal power requirements are fulfilled by well established CHP units, like
gas turbines and combined cycles, with the help of auxiliary boilers. This scenario
includes cogeneration units with two degrees of freedom, namely, gas turbines (GT-
2) with post-firing injection, and combined cycles with extraction condensing steam
turbine (NGCC-2). In GT-2, it is possible to burn supplementary fuel to increase
the amount of heat that can be recovered from the exhaust gases (10.16). In
NGCC-2, the amount of cogenerated heat and electric power is a function of the
consumed fuel and the opening of a steam extraction valve, as described in (10.15).
Opening the valve reduces the electric power efficiency and increases the amount of
recovered heat, while closing the valve drives heat production to 0 (see Figure 10.2),
but provides larger electric output.

1We report nominal values at an ambient temperature of 15 ◦C.
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Figure 10.3: Representation of instances 2-a and 2-b.

10.3.3 Results
In Table 10.1, the type and number of (co)generation units contained in each
instance are specified. The performance curves are obtained by fitting experimental
or simulated data with quadratic functions, since the curves are generally quite
smooth.

For scenario 1, we consider a single instance. For scenario 2, we consider four dif-
ferent unit configurations. In instances 2-a and 2-b (see Figure 10.3 for a schematic
representation), heat demand is relatively low. In instances 2-c and 2-d, heat re-
quirements are higher, and more units are necessary to fulfill them. Instances
2-b and 2-d include also cogeneration units with two degrees of freedom. All the
instances have n = 24 time periods.

Table 10.1: Type of units included in each instance. Input and output variables for
each unit are indicated on the second row. For instance, unit NGCC produces
heat power h and electric power e from fuel f .

HP AB SOFC NGCC NGCC-2 GT GT-2 number
(f → l) (f → h) (f → h, l, e) (f → h, e) (f, x→ h, e) (f → h, e) (f, y → h, e) of units

1-a 1 1 1 - - - - 3
2-a - 2 - 1 - 2 - 5
2-b - 1 - 1 1 - 1 4
2-c - 4 - 4 - 4 - 12
2-d - 4 - 2 1 2 2 11

Computational experiments were performed, for the MINLP formulations, with
the open-source solver SCIP 3.1.0 [Ach09]), while for the MILP formulations IBM
Ilog CPLEX 12.6 was used, both with default settings. For the MINLP, we have
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also experimented with BARON and Couenne, whose results are not included for
sake of brevity, since their efficiency on the considered instances was inferior. The
tests were carried out on an Intel Xeon with E3125@3.30GHz CPUs and 16GB of
RAM, with a time limit of 2 hours.

Note that, while MILP solvers are quite mature and stable, dealing with MINLP
problems requires some additional precautions. Compared to Formulation (10.1),
the MINLP model used in the computational experiments is strengthened by adding
valid bounds to all the decision variables, in order to help the spatial branch-
and-bound. We also add valid inequalities that provides a rough approximation
of the convex hull of the (non-convex) region defined by the performance con-
straints (10.14) if git is convex. The simple cutting plane is obtained in the input-
output space for a unit i (see e.g., Figure 10.2), by connecting the extreme point
(Fmaxit , git(Fmaxit )) either with the origin (0, 0) or with the point

(
Fminit , git(Fminit )

)
.

Although these valid inequalities are very simple, they appear to be of great help,
in particular for instance 1-a. Scaling is also essential, since the original data often
contain values that are several orders of magnitude apart (e.g., generated energy
with respect to cost coefficients), leading to numerical difficulties or, sometimes,
even incorrect results.

Table 10.2: Optimal values, computing time (seconds) and lower/upper bounds
for the MINLP and the approximate MILP with an increasing number of dis-
cretization points (d.p.) per dimension.

2 d.p. 3 d.p. 5 d.p. 9 d.p. MINLP

time opt time opt time opt time opt time LB UB gap
1-a 0.01 94.33 0.03 91.73 0.06 91.30 0.10 91.17 42.58 91.07 91.07 0.0
2-a 0.04 104.17 0.07 102.49 0.10 101.95 0.12 101.86 812.8 101.76 101.76 0.0
2-b 0.06 -80.12 0.14 -80.24 1.19 -80.33 4.53 -80.36 7200 -94.36 -71.97 31.1
2-c 0.15 307.01 0.04 302.73 0.09 300.75 0.09 300.51 7200 284.83 300.19 5.4
2-d 0.22 121.27 0.29 119.43 0.31 118.20 0.50 118.09 7200 -83.01 140.93 ∞

Table 10.2 summarizes the computational results. The MINLP instances turn
out to be challenging. SCIP is able to certify optimality for 2 out of 5, and on
2-c is close to the optimum, while the instances with 2-d.o.f. units are harder.
In comparison, the MILP formulations can be solved to optimality by CPLEX in
a few seconds. The MILP solutions are not necessarily feasible for the original
formulation, since the approximate model might overestimate the amount that
is generated. However, it is always possible to recover infeasibility a posteriori
by increasing the production level. Interestingly, on our instances all the MILP
optimal solutions are feasible (barring minor numerical errors), as they tend to be
on the discretization points.

The results show that the approximate optimal values approach the optimal
value of the original formulation as the number of discretization points is increased.
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The optimal values are significantly different when the approximation is less accu-
rate – except for instance 2-b, where the variation is small, since the solution is
dominated by a large NGCC-2 unit always at full load.

The structure of the solutions can differ significantly. As an example, we report
in Figure 10.4 two optimal schedules for a low-temperature heat pump in instance
1-a with a 2-point MILP approximation (left) and with the MINLP model (right).
Although the instance is simple, the structure of the optimal approximate solu-
tion differs from that of the optimal MINLP solution even when the number of
discretization points is increased to 5. To obtain optimal solutions to these two
problems that are equivalent, one needs to use at least 9 discretization points.
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Figure 10.4: Optimal plan for the heat pump of instance 1-a obtained with a
2-point piecewise approximation (left) and with the MINLP (right).

The results for two relatively simple scenarios of the short-term operational
planning problem indicate that even small-size instances of the MINLP can be
computationally very challenging. Tightening the formulation, along the lines of
the methods proposed by Frangioni and Gentile in [FG05], might be of great help
in improving the convergence of the MINLP solvers. Approximating the nonlin-
ear performance functions with piecewise linear functions is an alternative that
seems to work quite well in practice. For the considered instances, the result-
ing approximate MILP models can generally be solved more efficiently than their
MINLP counterparts, and they appear to be already fairly accurate with a few
linear pieces.

Attention must be paid to the feasibility of the solutions obtained with the
approximations. Indeed, if the optimal operating point of a unit is far from the
approximation discretization points, the piecewise linear function value might be
quite different from the actual value. Underestimating the actual performance value
may lead to suboptimal solutions with more than 3% error, while overestimating
it may lead to infeasible solutions.
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10.4 Operational planning with incentives
When dealing with real-world problems, it is often important to keep into account
also environmental considerations (e.g., pollution management). Indeed, in recent
years many governments have introduced laws that offer incentives on electricity
and fuel prices if a plant satisfies certain requirements. As an example, recent
Italian laws offer defiscalized prices if, over a time horizon of one year, the cogen-
eration units reach a specific efficiency. These constraints and incentives are often
nonlinear, and expressed in a form that is very difficult to translate into a mathe-
matical programming formulation2. We can usually approximate the constraints in
a reasonable way with simpler inequalities that impose linear bounds on the overall
efficiency of the system. An example of such constraint is the following:

1
ηth

∑
t∈T

qt + 1
ηel

∑
t∈T

et ≥
∑
t∈T

ft, (10.17)

where ηth and ηel are reference efficiency values for heat and electricity generation.
In essence, the constraint is imposing that the overall efficiency of the cogeneration
system is sufficiently high. If the constraint is satisfied, then some incentives,
that significantly reduce the overall cost, are offered. Specifically, the incentives
consist of fiscal reductions that translate into reduced objective coefficience costs.
In practice, the incentives can only be computed a posteriori, since they include
several complex rules that cannot be incorporated in the model.

The incentives, and the associated constraints, are typically imposed over longer
time horizons, e.g., a whole year. If one has to plan the operations over such a
long timespan, it is necessary to adopt some heuristic to tackle the resulting large-
scale problems. In the following section, we describe a heuristic algorithm that we
have developed, and that has been adopted by a large Italian energy company to
schedule the operations of residential buildings and hospitals.

10.4.1 A MILP-based rolling-horizon heuristic
The idea of the approach is to decompose the time horizon into smaller time frames
that are computationally manageable. In our case, a week, with 1-hour time peri-
ods, can be solved in a fairly efficient way. Let us denote by W = {1, . . . , 52} the
set of weeks in a year and with Ti the 24 time periods in week i. Then, we solve
sequentially the weeks in W . To ensure that the global efficiency constraints are
satisfied when optimizing over a single week i, it is necessary to use an estimate of
the contribution of the remaining weeks.

2As an example, we refer the (extremely) willing reader to the decree [DM11] (in Italian), and
the associated guidelines, to be found on www.gse.it: in order to access the incentives reserved to
high-efficiency cogeneration systems, a hierarchy of nonlinear criteria have to be met. The amount
of the incentive is also highly nonlinear with respect to the total energy production during the
year.
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The algorithm is composed of two phases. We give a high-level description in
Algorithm 10.1. In the first phase, we assume that we have a subset S ⊂ W of
reference weeks, with |S| � |W |, that are used to approximate the whole year3.
We associate each week of the year w ∈ W with one of the reference weeks, and
denote by π(i) the function that maps each week i ∈W to its reference week j ∈ S.
For a given week i, where Ti are its time periods, let us denote the total amount
of a variable over Ti by the aggregated variable Qi =

∑
t∈Ti

qt. Then, we solve
the weighted problem, which is an approximation of the complete yearly problem,
where we optimize simultaneously all the reference weeks in S, each with a weight
proportional to the number of weeks i ∈ W that are associated with it. As an
example, the Constraint (10.17) on cogeneration efficiency becomes:

1
ηth

∑
j∈S

Qjmj + 1
ηel

∑
j∈S

Ejmj ≥
∑
j∈S

Fjmj , (10.18)

where mj = card{i ∈ W : π(i) = j} is the number of weeks in W that are
associated with the sample week j ∈ S. At the end of the first phase, then, we
have a plan for each of the reference week which satisfies approximately the yearly
efficiency constraints.

Once we have solved the weighted problem, which is a first rough approximation
of the complete yearly problem, the second phase begins, and we start iterating
over the weeks i ∈W . At each iteration, we solve sequentially each rolling problem
i, defined as the problem where only the variables for week i ∈W are free and can
be optimized, while the values in the previous and following weeks are considered
to be fixed. The efficiency constraints (10.17) link together all the weeks in a year.
Then, in such constraints, for each variable that does not belong to i, we act as
follows:

1. for weeks i′ < i, which have been optimized in the current iteration l, we
consider the result of the last optimization phase for i′ in the current iteration;

2. for weeks i′ > i, which still have not been optimized in the current iteration,
we have to consider an estimate of the optimal values. If l > 1, we consider the
result of the optimization phase for i′ that occured at the previous iteration
(l − 1), while during the first iteration, we consider as an estimate of the
future results the solution of the weighted problem.

3The set S can be obtained in several ways. One way to combine the construction of the
sample weeks and the assignment of the weeks of the year is to consider it as a k-means clustering
in the space of the parameters (hourly demands, efficiencies and costs), where each dimension
corresponds to a parameter for a specific period t, and a week corresponds to a point. The result
of a k-means approach will be k groups of weeks around k centroids (the reference weeks).
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For a given week i, the efficiency constraint, that links all weeks in a year, becomes:

1
ηth

(
∑
i′<i

Q̄
(l)
i′ +

∑
t∈Ti

qt +
∑
i′′>i

Q̄
(l−1)
i′′ ) + 1

ηel
(
∑
i′<i

Ē
(l)
i′ +

∑
t∈Ti

et +
∑
i′′>i

Ē
(l−1)
i′′ )

≥
∑
i′<i

F̄
(l)
i′ +

∑
t∈Ti

ft +
∑
i′′>i

F̄
(l−1)
i′′ , (10.19)

where the terms involving variables that are not in week i are replaced by values
previously obtained as described. In particular, we denote by Q̄(l)

i , Ē
(l)
i , F̄

(l)
i the

optimal aggregated values of the variables for week i at iteration l.
The values of the incentives are recomputed at the end of each iteration. The

algorithm stops when the value of the global objective function (i.e., the sum of the
optimal values of all the weeks) for two consecutive iterations is within a certain
error ε > 0.

In practice, the heuristic algorithm works well: convergence is fast, usually
requiring no more than 10 iterations. The first iteration is the slowest, typically
requiring between 1 and 5 minutes per week, whereas following iterations are fast,
typically between 5 seconds and 1 minute per week, since our implementation allows
the optimization for week i at iteration l to start from the optimal solution of the
same week at iteration l− 1 (warm start), which, in most cases, is already close to
optimal. Note that, to obtain valid lower bounds, we can relax the problem simply
disregarding the efficiency constraints, or dualizing them in a Lagrangian fashion.
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Algorithm 10.1: MILP-based rolling horizon heuristic
Data: Reference weeks S, year weeks W
Assign each i ∈W to the closest reference week j ∈ S: π(i)← j;
Solve the weighted problem obtaining the optimal solution (q∗, e∗, f∗);
for j ∈ S do

Store the optimal values of reference week j:
Q̄∗j ←

∑
t∈Tj

q∗t ;
Ē∗j ←

∑
t∈Tj

e∗t ;
F̄ ∗j ←

∑
t∈Tj

f∗t ;
end
for i ∈W do

Initialize estimates for week i based on reference week π(i):
Q̄

(0)
i ← Q∗π(i);

Ē
(0)
i ← E∗π(i);

F̄
(0)
i ← F ∗π(i);

end
l← 1;
while error > ε do

for i ∈W do
Solve the single-week problem for week i with the efficiency
Constraint (10.19);
Store the optimal production levels for current week at iteration l:

Q̄
(l)
i ←

∑
t∈Ti

q∗t ;
Ē

(l)
i ←

∑
t∈Ti

e∗t ;
F̄

(l)
i ←

∑
t∈Ti

f∗t ;
end
Compute incentive values;
Compute error w.r.t. iteration l − 1;
l← l + 1;

end
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10.5 Concluding remarks
In this chapter, we have focused on real-world cogeneration systems, for which
the operational planning problem can be formulated as a mixed-integer nonlinear
program with a number of additional technical constraints.

In real cases, the problem is very challenging for MINLP global solvers. A
reasonable way to deal with instances of nontrivial size, is to use a piecewise linear
approximation of the nonlinear functions in the model, which leads to MILP which
can be solved quite efficiently with modern solvers. A possible route to investigate is
whether the convergence of the exact global optimization methods, such as spatial
branch-and-bound, can be improved with tighter formulation, e.g., adding valid
inequalities that approximate the convex hull of the feasible region, at the point of
being competitive with the piecewise linear approximation approach.

When the short-term operational problems have to be extended, e.g., to account
for yearly incentives, we have devised a rolling-horizon MILP-based heuristic which
handles large-scale problems quite efficiently, and the method has been adopted by
an Italian energy company to schedule the weekly operations of large buildings and
hospitals.

A natural extension of this work would involve taking into account uncertainty
in the demands, and integrating the robust optimization approach considered in
Chapter 9 into the complete formulation for operational planning of cogeneration
systems.
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Notation

LP Linear Programming
MILP Mixed-integer Linear Programming
MINLP Mixed-integer Nonlinear Programming
R,R+ set of (non-negative) real numbers
Q,Q+ set of (non-negative) rational numbers
Z,Z+ set of (non-negative) rational numbers

Part I

MMF Max-Min Fairness or Max-Min Fair, if used as an adjective
UFP Maximum Unsplittable Flow Problem
UFP-MMF Maximum Unsplittable Flow Problem subject to MMF
MB Max-Bottleneck Fairness
r-MMF Relaxed Max-Min Fairness with factor r
UFP-MB Maximum Unsplittable Flow Problem subject to MB Fairness
OD origin-destination pair

G = (V,A) directed graph with nodes V and arcs A
(i, j) directed arc connecting node i to node j
K set of origin-destination pairs
k = |K| number of origin-destination pairs (cardinality of the set K)
(s, t) origin-destination pair with origin s and destination t
φst total flow allocated to the (s, t) pair
cij capacity of the arc (i, j)
fstij flow allocated to the pair (s, t) passing through the arc (i, j)
uij upper bound on the flows allocated on the arc (i, j)
ystij binary bottleneck arc variable, if 1, arc (i, j) is bottleneck for (s, t)
xstij binary arc variable, if arc (i, j) is used by (s, t)
λpst binary path variable, if path p is used by (s, t)
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