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Abstract—We present two Mixed-Integer Linear Programming
(MILP) models for a microgrid planning problem which consid-
ers uncertainties in the main input data (hourly solar irradiance,
wind speed and electric demand). The first model adopts a
Two-Stage Stochastic Integer Programming (2SSIP) formulation
with discrete scenarios of input data, whereas the second model
adopts a Robust Optimization (RO) formulation with polyhedral
uncertainty sets for the input data. The aim is to determine an
optimal microgrid installment plan considering hourly combined
operation of all the components, and uncertainties in the main
input data. The 2SSIP model offers the possibility to obtain a
planning solution considering a subset of discrete scenarios sam-
ple from an appropriate probability distribution. The RO model
aims at determining a planning solution which is guaranteed
to be feasible for any realization of input data within certain
deviation specified in a so-called uncertainty set. To demonstrate
the effectiveness and applicability of these models, we present
a case study where we apply the two approaches to plan a
standalone microgrid using real data from the Singida region
in Tanzania. We show and compare results..

Index Terms—microgrid planning, optimization, robust opti-
mization, stochastic integer programming, uncertainties

NOMENCLATURE

Indices
b Index of types of storage battery (SB).
c Index of types of bidirectional converters (BC).
d Index of number of typical days.
g Index of types of diesel generators (DG).
h Index of number of hours.
p Index of types of photovoltaic (PV) arrays.
q Index of the segment in PWLA functions.
s Index of scenarios.
w Index of types of wind turbines (WT).
Sets
` Set of index of components to be considered ` ∈

{g, p, w, b, c}.
Variables
Cb Maximum capacity of SBB of type b.
Eb Maximum energy of SBB of type b.
Ed,h,b Total energy of SBB of type b in hour h of day d.
P ch
d,h,b Power to SBB of type b in hour h of day d.
P dch
d,h,b Power from SBB of type b in hour h of day d.
Pd,h,g Output from DGs of type g in hour h of day d.
P ch
d,h Total charging to the SBBs in hour h of day d.
P dch
d,h Total discharging from the SBBs in hour h of day d.
P dg,ch
d,h Total charging power from DGs.

P dg,exc
d,h Total excess power from DGs.
P dg
d,h Total power from online DGs.
P pv
d,h Total generation from PV arrays.
P ren,ch
d,h Total charging power from RESs.
P ren,L
d,h Total power from RES supplied directly to the load.
P ren,spl
d,h Total RESs power which is spilled.
P ren,tot
d,h Total generation from RESs.
Pwt
d,h Total generation from WTs.
Ud,h,g Number of online DGs of type g in hour h of day d.
Vd,h,g Number of started DGs of type g in hour h of day d.
winv

d,h Binary variable to indicate BC inversion mode.
wrec

d,h Binary variable to indicate BC rectification mode.
xchd,h Binary variable to indicate charging of SBB.
xdchd,h Binary variable to indicate discharging of SBB.
Zd,h,g Number of shut down DGs of type g in hour h of day

d.
Parameters
D̂d,h Electric demand in hour h of day d.
Ĝd,h Incident irradiance in hour h of day d.
ˆVhwd,h Turbine hub wind speed in hour h of day d.
πd,s Probability of discrete scenario of typical day d.
SOCb Minimum relative SOC of SBB of type b.
AC` Annualized capital cost for component of type `.
Cfuel Fuel cost.
Cbwb Battery wear cost.
DOD Depth of discharge of SBB of type b.
fd Weighting factor of typical representative day d.
N`,n` Number of component of type `.
SDC DGs shut down cost.
SUC DGs start-up cost.
Y` Lifetime of component of type `.

I. INTRODUCTION

Microgrid planning is performed to determine optimal com-
bination of types and sizes of Distributed Energy Resources
(DER) of different technologies in order to provide reliable
and continuous supply of electric power at minimum cost. In
microgrids, a significant part of the total Life Cycle Costs
(LCCs) is made up by its operational costs. This reveals
a strong interdependence between microgrid operational and
planning problem and thus make it necessary to integrate
the operation problem when dealing with microgrid design.



However, the presence of discrete design and operational
decisions, the nonlinear characteristics of Diesel Generators
(DGs), and the dynamics of Storage Battery Bank (SBB) make
the resulting model a Mixed-Integer Nonlinear Programming
(MINLP) problem, which is difficult to solve (see, e.g., [1]
for an experience on a similar problem). Furthermore, the
generation from renewable based technologies such as Photo-
voltaic (PV) arrays and Wind Turbines (WTs) are characterised
by uncertainties and variations which must be considered in
microgrid planning stage. Therefore, a challenging planning
aspect which must be addressed is how to determine the
optimal mix of microgrid power generation components and
the size of SBB in order to achieve continuous and reliable
supply of power at minimum cost. The optimal plan must
take into account operational flexibility requirements resulting
form uncertainties and variations in renewable resources and
electric demand.

Microgrid planning has received considerable critical at-
tention in recent years, as it is fundamental to achieving
technical, economic, and environmental benefits expected from
microgrids deployment. Most of the existing work in the
literature focus on the deterministic sizing and operational
problems [2]–[4]. These works apply different techniques,
such as heuristic algorithms [], mathematical optimization
[] or commercial planning softwares such as HOMER and
DER-CAM [2]. However, these approaches fail to address
the instrinsic uncertainty of renewable resources and electric
demand.

The two main frameworks for modelling uncertainties in
microgrid planning are Stochastic Optimization (SO) and
Robust Optimization (RO) [5], [6]. Within the SO framework,
microgrid planning model falls naturally under the Two-Stage
Stochastic Integer Programming (2SSIP) framework. In 2SSIP,
planning variables are considered as the first stage “here-
and-now” variables that are decided prior to the realization
of uncertain parameters, whereas operational variables are
considered as the second stage “wait-and-see” variables, which
are decided when the uncertain parameters have been ob-
served. SO approaches require rather detailed information on
probability distributions for all the uncertain parameters. Fur-
thermore, SO problems are computationally expensive due to
large number of scenarios used to quantify uncertainties. The
recent work in [7] applies SO-based Monte Carlo approach
to model uncertainties in capacity expansion planning of an
isolated grid with WTs, DGs, and SBBs. Another approach
to solve 2SSIP is to adopt a hybrid decomposition algorithm,
in which evolutionary algorithms (EA) decide the first-stage
investment decisions and mathematical programming solve the
second stage operational decisions is presented in [8], [9].
This approach gives sufficiently good solution, but EA does
not guarantee global optimality. The authors in [10] present a
Bender Decomposition (BD) algorithm to solve a SO model
which optimizes the configuration of hybrid power system with
DERs and storage system. In that paper all integer operational
variables are lifted to the first stage decision level to allow for
the use of the cutting plane method.

In contrast to SO, RO models parameter uncertainties by
using uncertainty sets. This approach is suitable for microgrid
planning problems particulary when planning a new microgrid
in which information on probability distributions for renewable
energy resources and electric demands are not readily avail-
able [11]. Indeed, with RO, only information on the support
interval of the parameters is necessary. In [12], RO is applied
to determine the optimal mix of power generation and storage
components in an autonomous system for supplying power
to a remote telecommunication station. In a recent paper by
Khodaei et al., RO is applied to model uncertainties in electric
demand, renewable resources, and market prices in microgrid
planning [13]. The authors apply a BD algorithm, which
consists of an investment master problem, solved annually,
and operational subproblems, which are solved hourly, that
are used to generate optimality cuts. It is worth pointing out
that the work in [12] does not consider DGs and assumes
the component capacities to be continuous variables, also ne-
glecting all combinatorial aspects of the operational problem,
whereas [13] consider a simplified operational model, with
only maximum and minimum generation limits for DGs.

In this article, we present 2SSIP and RO formulations for
the microgrid planning problem under uncertainty taking into
account the discrete aspect of the operations. The proposed
formulations consider integer commitment variables in the
second-stage, in order to achieve more realistic and accu-
rate approximation of operation costs. For the 2SSIP model,
uncertainties are modeled by hourly probability distributions
of electric demand, solar irradiance and wind speed. Discrete
scenarios are generated by Latin Hypercube Sampling (LHS)
and reduced to a finite and manageable number of input data
scenarios by the fast forward algorithm in GAMS/Scenred2.
This allows solving the 2SSIP model in its equivalent deter-
ministic form, as a large Mixed-Integer Linear Programming
(MILP) problem, by using a state-of-the-art mathematical
programming solver such as Gurobi [14]. In addition to
the SO with discrete scenarios, we also consider polyhedral
uncertainty sets, allowing us to write a RO formulation of the
problem. With the robust approach, we determine a solution
which is guaranteed to be feasible for any realization of
the input parameters in the uncertainty sets. The resulting
semi-infinite program can be reformulated as a mixed-integer
program with the addition of a polynomial number of auxiliary
variables and constraints.

The main contributions of this paper are twofold: first,
we integrate the detailed operational problem in a microgrid
planning model, and, second, we consider the uncertain-
ties in demand and renewable resources combining features
of stochastic and robust optimization. These improvements
clearly introduce modelling and computational challenges
which are not encountered in deterministic planning problems.

Section II presents the topology of the modeled microgrid
followed by Section III which presents the 2SSIP microgrid
planning model. The RO formulation is described in Sec-
tion IV. A case study to demonstrate applicability of the
proposed models is presented in Section V. Computational



results are presented and discussed in Section VI Finally, in
Section VII we give some conluding remarks and future plan.

II. MICROGRID ARCHITECTURE

This work considers a parallel hybrid microgrid topology
with AC and DC bus bars, as shown in Fig.1. It is assumed
that WTs, PVs, and SBB are connected to the DC bus bar,
whereas DGs and electric loads are connected to the common
AC bus bar. The DC bus bar is connected to the AC bus bar
via a Bidirectional Converters (BCs) capable of operating in
inversion and rectification mode. Charger controller represents
a bidirectional DC/DC converters which control charging and
discharging of the SBB based on State of Charge (SOC)
history. This topology offers superior performance over other
topologies, such as single bus DC or AC topologies, because
it enables all or part of electric demand to be supplied directly
by any combination of PV arrays, WTs, SBBs and DGs [15].
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Figure 1. Topology of a parallel AC-and-DC bus microgrid (arrows represent
power flow).

III. SIP MODEL FOR MICROGRID PLANNING

A. Objective function

The objective function minimizes total annualized life cycle
investment and operation cost computed over typical repre-
sentative day for each season, with scenarios for renewable
resources and electric demand hourly data.
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(1)

Where the first five terms represent annualized investment
costs for PV arrays, WTs, SBBs, BCs, and DGs; the sixth and
seventh terms express replacement costs for DGs and SBB
respectively; the eighth term represents O&M costs for DGs;
the ninth term represents fuel cost for DGs; and the tenth term
expresses start-up and shut down costs for DGs.

B. Constraints

The objective function (1) is minimized subject to the
following constraints:

• For each type of components, only one binary variable
which selects the number of component to install is
allowed in the plan.∑

n`

x
`,n`
≤ 1 ∀` ∈ {g, p, w, b, c} (2)

• For each scenario, power balance constraints are ex-
pressed by:

P dgd,h,s +
(
P dchd,h,s + P ren,Ld,h,s

)
ηinv − P dg,chd,h,s

−P dg,excd,h,s = D̂d,h,s ∀d, h, s (3a)

P ren,Ld,h,s = P ren,totd,h,s − P ren,chd,h,s − P
ren,spl
d,h,s ∀d, h, s (3b)

P ren,totd,h,s = P pvd,h,s + Pwtd,h,s ∀d, h, s (3c)

P dgd,h,s =
∑
g
Pd,h,g,s ∀d, h, s (3d)(

P dchd,h,s + P ren,Ld,h,s

)
≤ winvd,h,sP

inv ∀d, h, s (3e)

P dg,chd,h,s ≤ w
rec
d,h,sP

rec ∀d, h, s (3f)

winvd,h,s + wrecd,h,s ≤ 1 ∀d, h, s (3g)

P dg,chd,h,s ≤ P
dg
d,h,s − P

dg,exc
d,h,s − w

rec
d,h,sD̂d,h,s ∀d, h, s (3h)

wrecd,h,s ≤
∑
g
Ud,h,g,s ∀d, h, s (3i)

Constraint (3a) defines the power balance at the AC bus
bar of Fig.1, implying that the demand can be supplied
by any combination of DGs, SBB, PV array, and WTs.
Part of total generation from Renewable resources (RES)
which is supplied directly to the load is equal to the
difference between total RES’s generation and the sum
of charging and spilled power from RESs (3b). Total
RESs generation is given by sum of generation from PV
array and WTs (3c). Total power from DGs is the sum
of generation from all types of DGs which are online
at a particular period (3d). Exchange of power between
the two buses is limited by inversion and rectification
capacity of installed BC as described by (3e) and (3f).
The binary variables ensure that power flow from the
DC to AC bus or from AC to DC bus happens only
when the BC is in the inversion or rectification mode,
respectively. The BC cannot operate in inversion and
rectification mode at the same time (3g). Any online DGs
may charge the SBB when it operates at its minimum
limit and the demand is less than this DG minimum limit
(3h). The rectification mode can happen only when there
are DGs online (3i).

• DGs operation constraints are formulated based on the
Clustered Unit Commitment (CUC) method which mod-
els DGs commitment by integer variables. This allows
modelling hourly discrete operation decisions for one or
group of generators of the same type [16].

Ud,h,g,sPg ≤ Pd,h,g,s ≤ Ud,h,g,sPg ∀d, h, g, s (4a)



Vd,h,g,s − Zd,h,g,s ≤ Ud,h,g,s − Ud,h−1,g,s ∀d, h, g, s (4b)

Ud,h,g,s ≤
∑
ng

xg,ngNg,ng ∀d, h, g, s (4c)

Vd,h,g,s ≤
∑
ng

xg,ng
Ng,ng

− Ud,h,g,s ∀d, h, g, s (4d)

Zd,h,g,s ≤ Ud,h,g,s ∀d, h, g, s (4e)

DGs power generation limits are specified in (4a). Re-
lationship between number of start-up, shut-down and
online DGs is expressed by (4b). Number of online DGs
must be less than or equal to the number of installed DGs
(4c). The number of DGs that can be started-up or shut-
down is restricted to the number of remaining offline and
online DGs respectively, (4d) - (4e).

• Constraints for SBB operation

Ed,h,b,s = Ed,h−1,b,s + ∆h(ηchb P
ch
d,h,b,s − P dchd,h,b,s/η

dch
b ) ∀d, h, b, s (5a)

Eb ≤ Ed,h,b,s ≤ Eb ∀d, h, b, s (5b)

0 ≤ P chd,h,b,s ≤ xchd,h,sP chd,h,b,s ∀d, h, b, s (5c)

0 ≤ P dchd,h,b,s ≤ xchd,h,sP dchd,h,b,s ∀d, h, b, s (5d)

xchd,h,s + xdchd,h,s ≤ 1 ∀d, h, b, s (5e)

Cbbb =
∑
b

∑
nb

xb,nb
Npar
b,nb

Nser
b CbVb ∀b (5f)

Eb = Cbbb ∀b (5g)

Eb = (1−DODb)C
bb
b ∀b (5h)

E0,b = SOC0,bC
bb
b ∀b (5i)

Constraint (5a) relates the current energy in SBB to the
previous energy and the current charging and discharging
power. Energy in the SBB must be greater than or equal
to its minimum energy limit and less than or equal to
its maximum energy limit (5b). The maximum charging
and discharging limit for the SBB are expressed by (5c)
and (5d), that also enforce the complementarity condition
between charging and discharging power in combination
with (5e). Capacity of installed SBBof type b is defined
by (5f). Maximum, minimum and initial energy in the
SBB are defined by (5g), (5h), and (5i) respectively.

IV. RO MODEL FOR MICROGRID PLANNING

In our robust model, we are going to consider a typical
days for each season. However, as opposed to the SIP model,
we will not consider a discrete number of scenarios, but an
uncertainty set for each season. The RO model allows us to
determine a solution that is robust against the uncertainties for
each season (typical day).

A. Objective function

The objective function for RO model is similar to that of
2SSIP model presented in section III, except that the subscripts
for scenarios is dropped. We are still minimizing the fixed
annualized installment cost, while also taking into account the
operational costs. However, instead of a different operational
schedule for each scenario, in this case we only have one

robust operational schedule per season, whose cost has to be
accordingly weighted in the objective function.

B. Constraints

In the RO model, account for uncertainties in PV and WT
generation and electric demand. In particular, for each season
we consider all possible realizations of the uncertain param-
eters that belong to an uncertainty set. The uncertainty sets
are defined according to the budget of uncertainty framework
introduced in [17], as follows:

The parameter Γ controls the conservatism of the approach,
as it is an upper bound on the number of deviations that
can occur in the time horizon. From a theoretical standpoint,
the parameter Γ also gives probabilistic guarantees, thanks
to the bound described in [17]. The RO model is a semi-
infinite programming problem, since the robust constraints
must be satisfied for all the (infinitely many) parameters in
the uncertainty sets. However, for polyhedral uncertainty sets,
the problem can be easily reformulated exploiting duality
in linear programming, obtaining a robust formulation that
is of the same class as the deterministic problem (in this
case, MILP), except for a (manageable) number of additional
continous variables and constraints. We do not dwell in
further details about the reformulation, as it is rather standard
practice (see reference [17], and examples of usage in similar
contexts in [18], [19]). However, before applying the robust
reformulation, it is worth noting that we have to modify a part
of the constraints to render the model suitable for the robust
reformulation.

• As a first step, Constraints for SBB operation, which
replace (5a) and (5b), are written in an aggregated form
as follows:

Eb ≤ E0,b + ∆h
h∑
τ=1

(ηchb P
ch
d,τ,b − P dchd,τ,b/η

dch
b ) ≤ Eb ∀d, h, b. (6a)

This is close in spirit to the approach suggested in [18],
where the storage variables is replaced by its aggregated
form.

• Similarly, we get rid of all the equality constraints where
the uncertain parameters PV, WT, D appear, projecting
out the redundant variables (whose value is completely
determined by the remaining ones) by substition, namely
. . . . We do not write the complete model here for sake
of readability.
These substitutions allow us to have a model where the
uncertain parameters only appear in inequalities, thus we
can easily apply the RO framework.

• Note that DGs operation constraints (4a) - (4e) remain
the same, without the subscript for scenarios, as well as
all the remaining inequality constraints.

V. MICROGRID PLANNING CASE STUDY

The proposed 2SSIP and RO models are applied to optimize
the plan of a community microgrid considering PVs, WTs,
SBBs, and DGs. For the 2SSIP model, uncertainties in solar
irradiance, wind speed, and electric demand are modeled



by Beta, Rayleigh, and Normal probability density functions
(PDFs), respectively. Since the site is located in a tropical
region (. . . ), annual hourly input data are divided into dry
and rainy seasons in order to generate scenarios which retain
seasonal variations. Then, probability distributions for irradi-
ance, wind speed, and electric demand for each hour of the
days falling in the dry and rainy seasons are estimated. Using
these distributions, LHS is applied to generate 4000 discrete
scenarios for irradiance, wind speed, and electric demand.
Each season is represented by one typical day containing
20 reduced scenarios obtained by applying the fast forward
algorithm in GAMS/Scenred2 to reduce the 4000 scenarios
generated above. Reduced scenarios for irradiance and wind
speed are used in calculation of per unit generation of each
type of PV panel and WT considered in this study. ??? Figure
2 shows the 20 reduced scenarios for electric demand, power
from PV of type PV1, and power from WT of type WT1, for
each typical day representing the dry and rainy season.
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Figure 2. Scenarios for electric demand (D̄), power from PV1(P̄PV1) and
WT1(P̄WT1) for the typical day of dry season (left) and rainy season (right)

For the RO model, input data simply consists of average and
standard deviations of electric demand, per unit generation
from each PV and WT model. Figure 3 shows the input
data for the RO model. We make the assumptions that each
uncertain parameter will belong to the support interval µ± σ.
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Figure 3. Sample input data for RO model, average electric demand (D̂),
power from PV1(P̄PV1) and WT1(P̄WT1), and their corresponding standard
deviations

A. Components input data

Table I summarises technical and economic input data for
DGs.

TABLE I. SPECIFICATIONS OF DIESEL GENERATORS

Type
Pg Pg B1 A1 ACg RCg OMCg Y g

dg SUC SDC

[kW ] [kW ] [L/h/kW ] [L/h] [e] [e] [e/h] [h] [e] [e]

DG1 16.0 4.80 0.3000 0.4336 949.89 11000 0.2080 15000 0.4 0.20

DG2 7.2 2.16 0.3611 0.3830 335.99 3890.88 0.1008 8200 0.2 0.10

One type of PV array with specifications given in Table II was
considered.

TABLE II. SPECIFICATIONS OF PV PANELS

Type
PSTC
p TSTC GSTC fder V pv,n

p NOCT γ ACp Y p
pv

[kW] [oC] [kW/m2] [oC] [V] [oC] [%/oC] [e] [yr]

PV1 1 25 1 1 6 47 -0.5 355.73 25

Table III summarises specifications two types of WTs with
costs which include the economy of scale. Table IV presents

TABLE III. SPECIFICATIONS OF WIND TURBINE MODELS

Type
P

wt,n
w V

wt,n
w V ci

w V co
w ACg Y wt

w

[kW ] [m/s] [m/s] [m/s] [e] [yr]

WT1 10 12.5 3.0 25.0 3052.09 15

WT2 3 12.0 3.0 20.0 1277.88 15

specifications for the SBB. A bidirectional converter of 10 kW

TABLE IV. SPECIFICATIONS OF STORAGE BATTERY MODELS

Type
Cn Csb

b Vbn DOD ηch ηdch Ich Idch Chrb ACb Cbw,b Y sb
b

[Ah] [Ah] [V ] [%] [%] [%] [A] [A] [A/Ah] [e] [e/kW] [yr]

SB1 820 1151.56 6 60 90.0 90.0 82 500 1 153.62 0.1275 12

with annualized costs of e 1179.4 and lifetime is set to 20
years is considered. The converter rectification and inversion
efficiencies are both assumed to be 90%. Maximum allowable
number of converters to be installed is set to 10.

VI. RESULTS AND DISCUSSIONS

Table V shows the optimal number of each type of com-
ponent and the total annualized cost of microgrid obtained by
2SSIP model and RO model.

TABLE V. OPTIMAL COMPONENTS MIX FROM 2SSIP AND RO MODELS

Descriptions Number of Installed Components

Components/Costs Symbol Unit Capacity 2SSIP Model RO model

Diesel generators
DG1 16.0 kW 3 ?

DG2 7.2 kW 3 ?

Photovoltaic panels PV 1 1.0 kW 30 ?

Wind Turbines
WT1 10.0 kW 3 ?

WT2 3.0 kW 0 ?

Storage Battery SB1 4.92 kWh 12 ?

Bidirectional converter BC1 10.0 kW 4 ?

Total annualized cost of system TACS – e 86812.43 e ??



Breakdown of the total annualized cost of microgrid ob-
tained by the proposed 2SSIP and RO models are summarized
in Fig.4.
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×10
5

0

0.5

1

1.5

2

2.5

3

2SSIP Model

RO Model

Key

TAIC: Total annualized investment costs

TARC: Total annualized replacement costs

TAOMC: Total annualized O&M costs

TAFC: Total annualized fuel costs

TASUSDC: Total annualized start-up & shut-down costs

Figure 4. Decomposition of planning costs obtained by 2SSIP and RO models

VII. CONCLUSIONS

This study considers integer planning decision variables
which reflect the real-world application in which component
capacities are not continuous. One of the limitation of this
study is the long computation time. However, such long
computational for planning problems can be accepted since the
problem is solved off-line and only once during the planning
stage.
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