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Abstract—Inferring the type of vehicles on a road is a fun-
damental task within several applications. Some recent works
have exploited Global Positioning System (GPS) devices and
used classification of GPS traces to tackle the problem. Existing
approaches based on GPS data make use of GPS trajectories
sampled at high frequency (about 1 sample per second), but
GPS trackers currently installed on public and commercial fleets
acquire GPS positions at lower frequency (about 1 sample per
minute).

In this paper, we target the more challenging scenario of low
frequency GPS data, which has not been tackled yet in the
literature, and explore how this kind of data can be used to
effectively categorise vehicles into light-duty and heavy-duty. We
define several distance-, speed-, and acceleration-based features,
inspired by the literature on related problems like travel mode
detection, and add novel features based on road type. Features are
aggregated over a GPS track with several aggregation functions.
We identify the most effective combinations of features and
aggregation functions with a data-driven approach, by applying
Recursive Feature Elimination in a cross validation framework.
Furthermore, we combine predictions of all tracks of a vehicle to
boost classification performance. Experimental results on a large
dataset show that the selected features are indeed effective and
that the high and low frequency GPS scenarios greatly differ in
terms of relevant features.

I. INTRODUCTION

Inferring the type of vehicles in a road network, a problem
typically referred to in the literature as vehicle classification,
is a fundamental task in several applications, such as, e.g.,
surveillance systems [1], traffic management [2], emission
control and estimation of highway lifespan [3]. The Federal
HighWay Administration (FHWA) of the United States pro-
posed a 13-category vehicle taxonomy, based on the vehicle
weight, length, axles number and axles distances [4]. Even if
the rules have been revised over the years by companies and
agencies [5], the FHWA 13 vehicle categories are still used as
a classification target.

Methods to address the vehicle classification problem em-
ploy both hardware and software solutions in different con-
texts. When physical components can be installed along a road,
hardware-based techniques using fixed-location sensorscan be
adopted [3], [6]. Such approaches can provide the full 13-
class classification in exchange for a high installation cost.
On the other hand, most software-based techniques perform
classification from images or videos, obtained, for instance,
from surveillance cameras. The classification targets can vary,
also depending on the resolution of the cameras: e.g., vans,

taxis and passenger cars are considered in [1], while sedans,
pickups and vans in [7].

In the last decade, the great diffusion of GPS (Global
Positioning System) devices is generating a growing interest
in the application of data mining techniques to the huge
amount of spatio-temporal data produced by such devices.
GPS data are typically produced by either general-purpose
mobile devices (e.g., smartphones) or dedicated GPS tracker
devices, usually installed on commercial or public transport
vehicles (e.g., delivery fleets, taxis, ambulances) [8]. In the
former case, GPS signals are used for navigation or geo-
localisation purposes, hence with high sampling rates (of the
order of one GPS sample per second). In the latter case,
GPS signals are typically used for remote vehicle tracking
or anti-theft systems and lower frequency sampling (of the
order of one sample per minute) is sufficient. The use of low
frequency GPS data allows for the reduction of operational
costs due to bandwidth, storage space and computational
power and is therefore very common in industrial applications
and commercial fleet management solutions [8]. Clearly, the
technical and economical advantages come at the cost of
accuracy: lower frequency sampling means that information
on instantaneous speeds and accelerations are scarce or not
available at all and that it is harder to infer the true path of a
vehicle between two reported positions.

The ubiquity of GPS devices motivates the use of methods
that leverage GPS data to perform vehicle classification. Rely-
ing exclusively on GPS-based features makes a complete 13-
category classification very challenging, due to the difficulty to
have a clear measure of axles number and distances. However,
as reckoned in [3], in many real traffic applications, such as
travel pattern or quality of traffic flow estimation, it is often
sufficient to be able to distinguish between two or three classes
of vehicles.

To the best of our knowledge, the only work that explores
vehicle classification from GPS data [3] considers a two-class
classification problem, distinguishing between passenger cars
and delivery trucks. The reported results are obtained from
a small size dataset comprising 52 tracks of passenger cars
and 84 tracks of trucks. GPS data used in the paper has
a sample rate of 3 seconds, which is relatively high. The
authors conclude that speed-related features greatly depend
on traffic conditions, whereas acceleration- and deceleration-
based features have a more consistent predictive power.



Closely related to vehicle classification is the problem of
travel mode detection [9]–[12], albeit with the substantial
difference that the detection of travel modes such as walk,
bus, train and car allows for the use of highly discriminating
features (such as speed, number of heading changes, number
of stops, distance travelled) that may not be equally effective
in discriminating more finely-grained vehicle classes. In spite
of this difference, some features used for travel mode detec-
tion could turn out useful also for the vehicle classification
problem. For example, in [9], average speed, 95th percentile
speed, average absolute acceleration and travel distance are
used; average and maximum speed and accelerations and total
distance travelled were proposed in [10]; mean speed, top
three speeds of the segment and speed standard deviation were
shown to be effective in [11].

As far as low frequency data are concerned, they are used
for travel mode detection only by [12] (every 60 seconds).
The authors consider a variable-size moving window on both
acceleration and speed of a GPS track to predict the travel
mode. Low frequency GPS data have also been used for the
problem of travel time estimation [13], [14].

In this paper, we address the unexplored problem of vehicle
classification from low frequency data, such as the data
provided by GPS devices installed in commercial fleets for
vehicle-tracking purposes. Rather than focusing on classifying
passenger cars and trucks, as in [3], we aim at performing
binary vehicle classification over a more heterogeneous range
of road vehicles, distinguishing between smaller, light-duty
vehicles (i.e., cars, SUVs, vans and light duty pickups, that
correspond to classes 2-3 of the FHWA scheme [4]) and larger
size vehicles (i.e., heavy duty pickups, small trucks, trucks and
big trucks, classes 5-12 of the FHWA scheme).

In order to define a baseline for our approach, we adapt
the existing method [3], proposed for high frequency data,
to our scenario. Together with the acceleration-based features
identified in [3] as highly predictive, we consider also the
speed and distance-related features exploited for travel mode
detection, as they might become more relevant in the low
frequency scenario.

The main contributions of this paper are the following:
• we propose a comprehensive set of features based on

speed, distance and acceleration, inspired by state-of-the-
art algorithms on travel mode detection, and information
on the type of travelled road;

• we exploit a purely data-driven approach to assess the
relative importance and predictive power of each feature,
with a recursive feature elimination procedure applied to
a large vehicle dataset (more than 100 000 GPS tracks of
about 2000 vehicles), obtaining better performance than
the current state of the art;

• by analysing the ranking of the selected features, we
provide insight into the kind of features that are relevant
when classifying vehicles in a low frequency sampling
scenario;

• we show how classification performance can be sig-
nificantly improved by aggregating classification scores

across multiple tracks of the same vehicle.
The remainder of this paper is structured as follows. Sec-

tion II presents the methodology, in particular Section II-A
provides a high-level description of GPS data, Section II-B
presents in more details the method described in [3] and
discusses how it can be adapted to low frequency data, in
order to provide a baseline for our approach, and Section II-C
introduces all the features we evaluate and the feature selection
procedure. Section III presents the dataset used for the evalu-
ation and discusses the experimental results. Finally, Section
IV reports conclusions and future directions.

II. METHODS

In this Section, we describe the structure of GPS data we
used and how the solution described in [3] can be adapted
to a low frequency scenario. Afterwards, we introduce the
approach proposed in this paper, based on the application of
a feature selection algorithm to a broad set of features which
may have predictive power for vehicle class prediction from
low frequency GPS data.

A. GPS data

A GPS track is a sequence of GPS samples (or points)
{Pi}ni=1 = {P1, . . . ,Pn}, where P1 is the first point,
obtained immediately after the engine is turned on, and Pn

is the last point, obtained just before the engine is turned
off. Each GPS point Pi contains latitude and longitude
(i.e., position pi), odometer distance di, timestamp ti and
instantaneous speed vi. For future reference, we also define
{pi}ni=1, {di}ni=1, {ti}ni=1, {vi}ni=1 as the sequence of posi-
tions, distances, times and speeds of a GPS track, respectively.
It is worth pointing out that we cannot assume uniform
sampling rates in a track or across tracks, as data collected by
heterogeneous GPS devices may have different sampling rates
and the sampling rate can vary in the same device according
to vehicle speed or the occurrence of asynchronous triggers,
like e.g. harsh driving events. Fig. 1 reports an example of a
GPS track.

Starting from the raw data sequences, we introduce the
derived measurements {ṽi}ni=1, {ai}ni=1 and {ãi}ni=1 as the
sequence of finite differences of distance and of instantaneous
speeds, and the second order finite differences of speed over
time, i.e.,

ṽi =
di − di−1
ti − ti−1

, (1)

ai =
vi − vi−1
ti − ti−1

, (2)

ãi =
ṽi − ṽi−1
ti − ti−1

. (3)

We consider both instantaneous speeds and speeds based on
finite differences, computed as distance over time, as they
convey different information when applied to low frequency
data: instantaneous reads every 60 or more seconds can be
very noisy, but may capture short parts of the track with high
discriminative information, e.g., high speed events, whereas



Time Position Speed Distance

P1 0.0 s (42.13222, -72.55265) 0.0 m/s 0.0 m
P2 120.0 s (42.13737, -72.54227) 6.1 m/s 677.99 m
P3 221.0 s (42.12700, -72.54660) 16.3 m/s 1,830.12 m
P4 311.0 s (42.11551, -72.55024) 17.1 m/s 2789.96 m
P5 402.0 s (42.10739, -72.54664) 0.0 m/s 3792.06 m

Fig. 1. Example of a GPS track composed by five GPS samples. The sampling
frequency varies depending on vehicle speed and it is affected by hardware
delay, thus being not constant during the sequence. Note that the reported
speed is instantaneous, so it may be affected by traffic or street conditions.
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Fig. 2. Example of speed, finite difference speed, acceleration and finite
difference acceleration sequences.

speed computed as the ratio of distance over time in a
longer interval provides a more reliable and smooth estimate
of the trend of speed along the track. Similarly, since the
instantaneous acceleration is not available in our raw data,
we compute it as both finite differences of instant speed
and second order finite differences of distance over time. An
example of the two types of speed and acceleration is given
in Figure 2. For conciseness, we name ṽ, a and ã as interval
speed, acceleration and interval acceleration, respectively, in
what follows. After this preprocessing, every GPS point Pi is
associated to a set of values (pi, ti, di, vi, ṽi, ai, ãi).

Acceleration and deceleration exhibit different patterns in
the different vehicle classes, as mentioned also in [3]. How-
ever, parts of the track where the vehicle is idling1, e.g. in
a traffic jam, can be less useful for recognising its class.

1We define idling as engine on without the vehicle moving.

Therefore, we associate to a GPS track six more sets, {a>0},
{a<0}, {ã>0}, {ã<0}, {v>0} and {ṽ>0}, that we name
positive acceleration, deceleration, positive interval accelera-
tion, interval deceleration, positive speed and positive interval
speed, respectively, defined as

{a>0} = {ai|ai > 0, i = 1, . . . , n} (4)
{a<0} = {−ai|ai < 0, i = 1, . . . , n} (5)
{ã>0} = {ãi|ãi > 0, i = 1, . . . , n} (6)
{ã<0} = {−ãi|ãi < 0, i = 1, . . . , n} (7)
{v>0} = {vi|vi > 0, i = 1, . . . , n} (8)
{ṽ>0} = {ṽi|ṽi > 0, i = 1, . . . , n}. (9)

B. Baseline model

To define a baseline model for our analysis, we adapt the
vehicle classification approach described in [3] to our low
frequency GPS data scenario. In the original proposal, the
authors first split the acceleration sequence retrieved from
GPS tracks in the set of (strictly positive) accelerations and
decelerations. Then, to obtain features at the track level from a
sequence of GPS samples, they separately aggregate the values
from the two sets with two measures:
• standard deviation of the values across the track
• fraction of values greater than 1 m/s2.
The standard deviation of the acceleration can be computed

also for low frequency data. However, note that acceleration
is estimated over a much larger time interval: if we consider,
for instance, a 60 seconds sampling rate, an acceleration
larger than 1 m/s2 could only be obtained observing a speed
difference between two consecutive GPS samples of more
than 60 m/s, i.e. 216 km/h, which is extremely unlikely
to occur in real data. Thus, to adapt the approach in [3] to
low frequency data, we consider a variable threshold T to
define the informative part of the distribution of accelerations
and decelerations, and we tune it via cross-validation from
the training set. We assessed both the ai and ãi definitions
of the acceleration and found that the second order version
leads to slightly better classification performance, overall.
Classification is then performed, as in [3], using a Support
Vector Machine (SVM) [15] with quadratic kernel.

C. Feature selection approach

As discussed in the introduction, the acceleration-based
features used in [3] may not be the only predictive cues
with low frequency data. Speed and distance-related features,
usually exploited for travel mode detection, might become
more relevant. Given the differences between our task and
travel mode detection, it is difficult to make any a priori
assumption on the importance of each feature and on what
aggregation function to use in our scenario. For this reason, we
decided to consider a large number of features and aggregation
functions and to automatically filter the redundant and not-
discriminative features using a feature selection algorithm. We
consider a set of 10 feature sequences for each GPS track,
reported in Tables I, and aggregate them with 13 functions,



TABLE I
LIST OF FEATURE SEQUENCES AND SETS OBTAINED FROM A GPS TRACK

Variable Description

{vi}ni=1 speed sequence
{ṽi}ni=1 interval speed sequence
{ai}ni=1 acceleration sequence
{ãi}ni=1 interval acceleration sequence
{a>0} positive acceleration set
{a<0} deceleration set
{ã>0} positive interval acceleration set
{ã<0} interval deceleration set
{v>0} positive speed set
{ṽ>0} positive interval speed set

reported in II. For example, we consider the sequence of
speeds {vi}ni=1 of a track and aggregate it with the mean
function, obtaining the mean speed of the track as a feature
for the whole track. This results in a total of 130 possible
features for each track. To define the 6 histogram bins for
the aggregation functions hist1, . . . , hist5 we consider all the
values of all tracks in the training set for a feature sequence,
e.g. all values of speed in the training set, we take the interval
between the 5th and 95th percentiles and divide it into 6 bins.
hist6 is not used as feature as it always includes all samples
of the sequence.

We also include in the set of features the total distance
covered by the vehicles in the track, inspired by the fact that in
general heavy duty vehicles are used for longer trips compared
to smaller vehicles.

Finally, we also consider a set of domain-related features,
i.e., the category of the road on which each GPS sample
is acquired, due to the fact that speed and acceleration of
different vehicles may vary significantly according to the road
on which they are travelling. In particular, for each track, we
compute the fraction of GPS samples in the sequence falling
in each of the considered road type, which are motorway,
highway, trunk road, country road, city road and residential
road, for a total of six additional features. Hence, the final
number of considered features for each track is 137.

Feature selection is a well-known problem in supervised
learning, where the aim is to reduce the dimensionality of the
feature space in order to overcome the risk of overfitting, i.e.,
of learning a model too fit to the training data and unable
to generalise to unseen data. For our analyses, we chose
the Recursive Feature Elimination (RFE, [16]) algorithm for
feature selection: the algorithm starts from the entire set of
features and tests the impact of the removal of one feature
at a time on classification performance. Then, the feature
whose removal leads to the smallest decrease (or the largest
increase) in classification performance is removed from the
set of used features. The process is then iterated until no
feature remains, resulting in a ranking of features in increasing
order of importance for the classification task. In order to limit
computational time, the possibility of removing more than one

TABLE II
LIST OF AGGREGATION FUNCTIONS

Function Description

mean mean value of the sequence
std standard deviation of the sequence
median median value of the sequence
mad median absolute deviation of the sequence
iqr interquartile range of the sequence

75th 75th percentile of the values in the sequence
90th 90th percentile of the values in the sequence
95th 95th percentile of the values in the sequence

hist1 fraction of samples in the first bin of the 6-bin histogram
hist2 fraction of samples in the first 2 bins of the 6-bin histogram
hist3 fraction of samples in the first 3 bins of the 6-bin histogram
hist4 fraction of samples in the first 4 bins of the 6-bin histogram
hist5 fraction of samples in the first 5 bins of the 6-bin histogram

feature at a time in each RFE iteration is suggested in [16],
at the expense of a minor decrease in precision of the feature
ranking.

As a measure of classification performance, we chose the
widely adopted Area Under the ROC, or Receiver Operation
Characteristic, curve (AUC for brevity). Such metric considers
the curve of variation of false positive rate (fpr) vs. true
positive rate (tpr) at different values of the classification
threshold (ROC curve), where

tpr =
TP

TP + FN
, fpr =

FP

FP + TN
. (10)

The area under the ROC curve depends on both false positives
and true positives: this lets it penalise models which are
representative but not discriminative and, thus, makes it robust
even in the case of unbalanced datasets.

The pseudocode of our RFE procedure is reported in
Algorithm 1. The dataset is first split by performing k-fold
cross validation, stratified on the two classes, to be able to
statistically assess classification performance on k sets of
independent data (line 1 of Algorithm 1). For each cross-
validation train/test pair, we halve the number of features
at each iteration of RFE by discarding those features whose
removal yields to the lowest AUCs. Therefore, given the
number of input features m, we can pre-compute the number
of iterations m, line 2, and the number of features to be
removed at each iteration, array B, line 4. At each RFE
iteration, to compute AUCs we first set aside one feature at
a time from the set of remaining features, train the model on
the train set and assess the corresponding AUC on the test set
(line 10).

At the end of this procedure, we obtain a ranked list of
features for each fold, stored in the rows of the matrix of
ranks R (line 14). To compute a ranking over the whole
training set, we sort features according to their median rank
across the k folds (line 19). To compute the optimal number
of features f∗, we consider the sets {AUC1,t, . . . ,AUCk,t} of



Algorithm 1 Recursive Feature Elimination
Input: Dataset D ∈Mn×m(R)
Output: Best feature set

1: (Train1,Test1), . . . , (Traink,Testk)← kFoldCV(D)
2: m← dlog2 me+ 1
3: Define R ∈ Mk×m(R), AUC ∈ Mk×m(R), B ∈ Rm,

Rmed ∈ Rm

4: B ← {m, dm/2e,
⌈
dm/2e

2

⌉
, . . . , 1}

5: for i← 1 to k do
6: features← {1, . . . ,m}
7: AUCi,1 ← AUC of the classifier trained on Traini and

tested on Testi, with features features
8: for b← 2 to m do
9: for j ← 1 to length (features) do

10: Compute AUC of the classifier trained on Traini

and tested on Testi, with features features \ j
11: end for
12: features← Best Bb features
13: s← 1 +

∑b−1
i=2 Bi, e←

∑b
i=2 Bi

14: Ri,s...e ← {worst Bb features, ordered by AUC}
15: AUCi,b ←AUC of the classifier trained on Traini and

tested on Testi, with features features
16: end for
17: end for
18: for b← 1 to m do
19: Rmed

b ← median rank across R1,b, . . . , Rk,b

20: end for
21: pVal← 0, t← m
22: while pVal < 0.05 and t > 1 do
23: pVal← p-value of a Wilcoxon signed-rank test for sig-

nificantly larger median between the AUC distributions
{AUC1,t, . . . ,AUCk,t} and {AUC1,t−1, . . . ,AUCk,t−1}

24: t← t− 1
25: end while
26: f∗ ← Bt+1

27: return f∗ features with the lowest median rank Rmed

AUCs obtained at each iteration t of the RFE procedure. We
compare each pair of sets of k AUCs, obtained with feature
sets of increasing size, with a Wilcoxon signed-rank test for
significantly larger median [17], stopping when the test detects
no significant increase in AUC, with confidence threshold 0.05
(lines 21 to 26).

As a classifier we use Support Vector Machines (SVM [15])
for their recognised effectiveness in binary classification [16].
The optimal configuration of the SVM model, namely the
kernel type and its numerical parameters, is chosen via k-fold
cross validation, as explained in the next section.

III. EXPERIMENTAL RESULTS

A. Data collection and description

To our knowledge, no public low frequency GPS datasets
labelled by vehicle type exist. Our dataset was collected by
Fleetmatics over two months of activity of vehicles in the

USA. The GPS sampling rate of the devices varies depending
on the status of the vehicle: if the speed is lower than a
threshold while the engine is on, the vehicle is idling and
the sampling interval is 120s, otherwise the vehicle is moving
and the sampling interval is 90s.

To build the dataset, a subset of vehicles tracked by Fleet-
matics were manually labelled by considering the maker and
model reported by the owner, dividing the data as follows:
• CAR, compact and subcompact cars
• SUV, SUVs and jeeps
• VAN, vans and commercial vans
• PICKUP, pickups with engine capacity lower than 3.5

litres
• SMALLTRUCK, pickups with engine capacity higher

than or equal to 3.5 litres, small sized trucks
• TRUCK, medium sized trucks
• BIGTRUCK, big sized trucks.

The labelling was mainly performed by visual inspection of the
model of the vehicle and, thus, it depends on some judgement
calls on the borders (e.g., the distinction between medium and
big trucks). It is also worth noting that several car companies
implement cutaway versions of vans and pickups, making
them more similar to small trucks than pickups or vans.
Finally, small pickups are used similarly to cars or vans mainly
for people or small equipment transportation while heavy
duty pickups, designed for the transportation of heavy loads,
are more similar in utilisation and GPS dynamics to small
trucks. Therefore, we chose to put a threshold on the engine
displacement, and to label pickups with engine displacement
smaller than 3.5 litres as PICKUP, and as SMALLTRUCK
otherwise.

The vehicles were further grouped in two higher level
classes in order to perform binary classification: CAR, SUV,
VAN and PICKUP were labelled as LIGHT-DUTY, SMALL-
TRUCK, TRUCK and BIGTRUCK were labelled as HEAVY-
DUTY.

For the present analysis, we decided to target the Small
and Medium Businesses (SMBs) segment: 1987 vehicles were
sampled from the set of Fleetmatics SMB customers stratifying
on vehicle type, i.e., reproducing the distribution of the vehicle
types in the business segment. The distribution of the vehicles
across types in the sampled dataset is reported in Figure 3:
as it is clear from the figure, the vast majority of vehicles are
PICKUPs and VANs.

For each vehicle, the full set of GPS samples over two
months were segmented into GPS tracks by using engine
on and engine off events triggered by the GPS devices.
Only vehicles having at least 10 GPS tracks in the two months
were considered. Furthermore, only tracks having at least 3
positive accelerations and 3 decelerations were considered, i.e.,
|{a>0}| ≥ 3, |{a<0}| ≥ 3, |{ã>0}| ≥ 3 and |{ã<0}| ≥ 3.
The final dataset is formed by 15 792 GPS tracks in the
HEAVY-DUTY class and 103 122 GPS tracks in the LIGHT-
DUTY class. We split the dataset in a training and a test set,
composed of 993 and 994 vehicles and 58 525 and 58 453
tracks, respectively.
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Fig. 3. Vehicle distribution in the dataset.

TABLE III
PERFORMANCE OF KERNEL FUNCTIONS BEFORE FEATURE SELECTION,

ESTIMATED BY 5-FOLD CROSS VALIDATION ON THE TRAINING SET

Kernel Optimal parameters ROC AUC

Linear C = 1 0.6881
Polynomial C = 1 c0 = 1 γ = 0.01 d = 3 0.7973
RBF C = 46.4159 γ = 0.0022 0.8036

TABLE IV
OPTIMAL PARAMETERS USED IN THE EXPERIMENTS.

Method Optimal parameters

Baseline C = 0.5623 T = 0.375

Proposed Method C = 46.4159 γ = 0.0022

Finally, in order to obtain the road type information, each
(latitude, longitude) pair was processed with the commercial
product PTV xServer2, but similar results could be obtained
with any free reverse geocoding service, e.g., OpenStreetMap3.
As a result, the fractions of GPS samples in the train and test
sets for each road type were 21.63% for motorway, 2.29%
for highway, 3.41% for trunk road, 14.55% for country road,
25.96% for city road and 32.16% for residential road. These
numbers reflect the operations distribution of Fleetmatics SMB
customers, with 25/30% long haul trips on major roads and
the remainder of traffic on country roads or city networks.

B. Results

The baseline approach based on [3] was tuned using strat-
ified 5-fold cross validation to estimate the optimal threshold
T and the SVM parameter C [15] which maximise the AUC.
Optimal parameters are reported in Table IV.

To select the best SVM kernel and tune its parameters for
the proposed approach, we compare three commonly used

2http://xserver.ptvgroup.com/
3http://www.openstreetmap.org/
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kernels (linear, polynomial and Radial Basis Function, or RBF)
and assess several combinations of kernel parameters with
grid search, using the entire feature set in a stratified 5-Fold
cross validation. The results of kernel selection and parameter
tuning are reported in Table III, with RBF as the best kernel.
The kernel parameters are then kept fixed during the feature
selection step. When the best subset of features are identified,
stratified 5-Fold cross validation is used again to obtain the
final C and kernel parameters, which are reported in Table IV.
To take into account unbalanced classes, the misclassification
parameter C is weighted with respect to the number of training
examples in each class for both methods.

The RFE algorithm has been applied with 15-fold cross
validation to increase the statistical significance of the feature
ranking. The box plots of the AUCs obtained in each step of
the RFE algorithm are reported in Figure 4. The one-tailed
paired Wilcoxon test reported a p-value always lower than
5 · 10−5, except on the comparison between 69 features and
137 features (p = 0.997). Thus, the optimal number of features
f∗ was set to 69. In Table V, the list of selected features is
reported, along with their ranking. The most relevant features
are the travelled distance and the fraction of GPS samples
in each type of road, combined with aggregated features
regarding the distribution of the positive speed values (standard
deviation, 95th percentile and fraction of samples in the first
bins of the histogram). A few acceleration-based features,
in accordance to what was found in [3], are still relevant,
although they appear to be generally less predictive than speed-
based measures when dealing with low frequency data.

In Figure 5, the resulting ROC curves for the baseline
and the proposed method are reported. The results show that
introducing new domain-based features and using data-driven
feature selection leads to a significant improvement over the
set of features suggested by [3] in our scenario of low-
frequency GPS data (a ROC AUC of 0.769 compared to a
baseline of 0.715).

It is important to stress that domain-based features alone,



TABLE V
RESULTING SET OF SELECTED AGGREGATED FEATURES AND DOMAIN-RELATED FEATURES. THE PRESENCE OF A NUMBER INDICATES THAT THE

FEATURE-FUNCTION PAIR (INT THE TOP TABLE) OR THE DOMAIN-RELETED FEATURE (IN THE BOTTOM TABLE) HAS BEEN SELECTED BY THE
ALGORITHM, THE LUMINANCE AND THE NUMBER OF THE ENTRY INDICATES THE RANKING, FROM THE HIGHEST (BLACK) TO THE LOWEST (GRAY).

{vi}ni=1 {ṽi}ni=1 {ai}ni=1 {ãi}ni=1 {a>0} {a<0} {ã>0} {ã<0} {v>0} {ṽ>0}

mean 19 47 68 20 36
std 13 26 54 5 27
median 62 50 56 42 49 39
mad 30 66
iqr 53 64 69 59 23
75th 15 58 46 35
90th 67 51 43
95th 45 29 8 16
hist1 28 31 18 63 61 12 9
hist2 32 21 55 25 14
hist3 22 57 33 11 48 38 40
hist4 24 60 34 41
hist5 44 65 17 37 52

Road type percentage Total distance
motorway highway trunk road country road city road residential road

3 7 10 6 4 2 1

though highly ranked, would not be able to provide a good
classification performance: a simple experiment using only
road type and total travelled distance yields an AUCs of 0.65,
far below what we obtain when the optimal 69 features are
considered.

The results shown so far involve only vehicle classifica-
tion from a single observed track. However, several tracks
are actually available for each vehicle in our dataset. It is
thus natural to assess the effectiveness of performing vehicle
classification based on the full set of GPS data at our disposal
for each vehicle, rather than on a single track. As a first step,
every track in the dataset is classified by using the single-track
SVMs, yielding a discrete label and the continuous, signed
value of the decision function for the single-track. Then, we
use as decision function for each vehicle the average of the
values of the single-track decision functions obtained from
its GPS tracks. The results reported in Figure 6 show that
the aggregation of multiple tracks for a vehicle leads to a
consistent increase in classification performance (0.89 AUC).

Finally, in order to analyse the classification performance
in more detail, let us consider the cutoff threshold of the
ROC curve yielding the smallest distance from the optimal
classifier, i.e., the closest point in `2-norm to the top-left corner
in Figure 6, for both the baseline and our proposed method.
Using such values we obtain the confusion matrix in Table VI,
where we show the classification performance with respect to
each of the lower-level vehicle types. As it can be seen, both
classifiers performs very well at the extrema of the spectrum,
i.e. on small vehicles (CAR and SUV) and on big vehicles
(TRUCK and BIGTRUCK), while performance is worse when
trying to classify PICKUP from SMALLTRUCK. This is likely
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Fig. 5. Classification results when analysing one track at a time

due to the intrinsic ambiguity in the definition of these classes,
as reported in Section III-A. Interestingly enough, the baseline
method has better results than our method on 2 out of 7 vehicle
types, CAR and SMALLTRUCK, which more closely match the
two types of vehicles used in [3].

IV. CONCLUSIONS

This paper investigates the yet unexplored problem of
vehicle classification from low frequency GPS data. A baseline
is created by adapting and fine tuning the approach used by [3],
originally proposed for a scenario with higher frequency
data. The proposed approach uses features based on travelled
distance, speed and acceleration, aggregated over each GPS
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Fig. 6. Classification results when using all the tracks of a vehicle

TABLE VI
CONFUSION MATRIX ON THE MULTIPLE TRACKS PER VEHICLES RESULTS

Baseline Proposed method
LIGHT-DUTY HEAVY-DUTY LIGHT-DUTY HEAVY-DUTY

CAR 0.923 0.077 0.808 0.192
SUV 0.783 0.217 0.870 0.130
VAN 0.788 0.212 0.859 0.141
PICKUP 0.723 0.277 0.741 0.259

SMALLTRUCK 0.435 0.565 0.449 0.551
TRUCK 0.205 0.795 0.096 0.904
BIGTRUCK 0.053 0.947 0.000 1.000

track with several functions. It also exploits the type of
travelled roads using a reverse geocoding service. The best set
of features is selected automatically via a Recursive Feature
Elimination algorithm in a cross-validation framework, where
classification is performed via SVM with an RBF kernel.

The experimental results show that the feature selection
procedure extracts a set of highly predictive features, let-
ting our method outperform the baseline in terms of area
under the ROC curve. The optimal set of features is quite
large (69 features) and heterogeneous, but several high level
consideration can be drawn. First, total driven distance and
road types are within the top 10 features, thus confirming
our intuition on their potential value for vehicle classification.
Second, some features related to speed are also ranked very
high: these can be expected to be more important in a low
frequency scenario than acceleration-based ones, but we also
speculate that their importance is amplified by exploiting them
in conjunction with road types, as our experimental results
suggest. Third, some acceleration-related features, albeit less
important in the low-frequency scenario, still contribute to
classification performance and are worth being included in the
set of discriminative features.

Furthermore, we show how the classification of several
tracks from the same vehicle can be effectively aggregated, by

performing a weighted average over the output of the SVM
classifier. Experimental results show that this procedure is able
to boost classification performance, both for our method and
the baseline.

Several future directions can be envisioned for this work.
The dataset could be used to tackle multi-class classification,
e.g. by considering first a MID-DUTY class, and then further
up to, potentially, all 7 available vehicle classes. Several
additional features could be assessed, such as track tortuosity
or GPS altitude. Furthermore, sequence-based kernels could be
explored, to investigate if the sequences of GPS points could
be directly used without the need of aggregation functions.
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