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Abstract—The ability to detect vehicle accidents from on-board
sensor data is of the utmost importance to provide prompt
assistance to prevent injuries and fatalities. In this article, we
present a novel deep learning method capable of analyzing time
series recorded from Inertial Measurement Units (IMU) and
GPS devices to recognize the presence of an accident along
with its severity. We propose a neural architecture capable of
exploiting the different sensor streams (i.e., acceleration, gyro-
scope, and GPS speed), a multimodal constrastive self-supervised
training procedure, and an ad-hoc stack of data augmentation
techniques, specifically designed to counteract the extreme class
imbalance and to improve the generalization capabilities of
the whole pipeline. The proposed method has been validated
against several state-of-the-art methods on a large and highly
imbalanced dataset, composed of more than 200 thousand time
series collected from US vehicles, with different vehicle sizes and
traveling on different types of road. Our method achieves an
average-precision score (AP) of 0.9 in the detection of crashes and
0.76 in the detection of severe crashes, significantly outperforming
all the other approaches, and has small footprint and latency, so
that it can easily be deployed on embedded devices.

Index Terms—Crash Detection, Neural Networks, Self-
Supervised Learning, Time Series Classification.

I. INTRODUCTION

ROAD traffic accidents are a leading cause of death,
injury and disability. In 2019 about 40000 fatalities were

registered in the US due to traffic accidents. World Health
Organization predicts that road traffic injuries will be the
fifth cause of death by 2030. The development of a real-
time collision detection algorithm able to promptly detect
and report traffic accidents is of the utmost importance for
intelligent vehicles. In recent years, manufacturers, insurance
companies, and fleet intelligence companies have been de-
veloping automatic crash detection systems embedded into
connected vehicles (recording IMU and GPS data), whose aim
is to monitor the vehicle dynamics and detect anomalies from
telematics recordings [1]. The reliability of crash detection
algorithms and their ability to estimate the severity of detected
events assume a critical role in promptly and automatically
calling police offices or emergency when severe accidents are
detected. In this direction, we present a novel light-weight
deep learning approach that analyzes vehicle sensor data
(acceleration, angular speed, and GPS speed) recorded inside
the vehicle to understand the presence of an accident and its
severity. Our method works on non-overlapping chunks of 16
seconds of duration, and it is able to compute a prediction on
a standard CPU in around 0.03 seconds. Given the fact that

†Verizon Connect Research, Florence, Italy
‡Email: francesco.sambo@verizonconnect.com

crashes are extremely rare events (the average US driver has
one accident every 165000 miles on average), and machine
learning approaches find a great challenge when dealing
with imbalanced datasets [2], we propose a custom training
procedure based on self-supervised learning that greatly im-
proves the end-to-end performance of our method. We also
propose a neural architecture, capable of tackling data recorded
from heterogeneous sensor streams (multimodal data), with
a custom architecture specifically designed to leverage the
knowledge that crash severity levels are intrinsically ordered
(ordinal classification problem). We compare our architecture
with state-of-the-art architectures for time series classification,
showing that our design choices outperform the state of the
art for the problem we consider. Moreover, we develop a
custom pipeline of data augmentations, specifically designed
to deal with IMU/GPS data, aiming to reduce overfitting for
the minority accident-related classes in our dataset. The main
contributions of our work are:
• An effective deep learning architecture capable of extract-

ing vehicle dynamics-related features that are employed
to solve the traffic accident detection problem formulated
as an ordinal multiclass classification task.

• A stack of data augmentation techniques, specific for
this task, able to significantly reduce overfitting for the
minority class.

• A customized training procedure, suitable for this kind of
imbalanced classification problem, based on a contrastive
multimodal self-supervised learning method, followed by
fine-tuning with negative sampling.

The paper is organized as follows: in Section II we review
existing literature about time series classification and crash
detection from vehicular sensor data; in Section III we present
an overview of our dataset, we describe the sensors’ specifi-
cations and we provide definitions for our ground truth labels;
in Section IV we introduce the proposed neural architecture,
we formulate mathematically the task we want to solve, we
showcase all the data augmentations employed to improve the
generalization capabilities, and finally we describe the training
procedure composed of an unsupervised pre-training step and
supervised fine-tuning; in Section V we discuss experimental
results followed by concluding remarks in Section VI.

II. RELATED WORK

Time series classification (TSC) is a well-known problem
in the machine learning literature that aims at learning a clas-
sification function mapping a whole temporal sequence to a
single categorical variable. Before the advent of deep learning
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based techniques, popular approaches for TSC were based
on Nearest Neighbor (NN) classifier coupled with a suitable
distance function (e.g., Dynamic Time Warping, DTW) [3].
Other classical approaches [4], [5] leverage ensemble methods
where random forests or other discriminative classifiers exploit
several automatically extracted features from different repre-
sentations (e.g., shapelet transformations or DTW features).
Although these methods achieve great accuracy, in practice
they often result unfeasible to datasets with several thousands
of samples. Their main limitation is the time complexity,
which typically scales as O(n2l4) or O(n2l2), where n is the
number of examples and l is the time series length [6]. More
recently, deep neural networks have proved to be effective
when processing unstructured data such as images, texts
and time series. In the survey [7] the authors perform an
empirical comparative study of the most recent deep learning
approaches for TSC, showing that deep neural networks can
significantly outperform DTW-based NN classifiers and can
achieve the same performance of ensemble methods with a
significant drop in time complexity. Through an exhaustive
empirical study, the authors strongly suggest using out-of-the-
box ResNet [8] implementations with 1D convolutional blocks
and batch normalization instead of 2D blocks used for images.
The same authors of the survey propose an Inception-like
convolutional neural network (CNN) [9] capable of achieving
better performance than ResNet in several scenarios. Recurrent
neural networks (RNN) have also proved extremely effective
in solving time series classification-related tasks [10], [11].

One known problem of deep neural networks is weight
initialization, especially working with small datasets. In image
classification problems, it is customary to pre-train CNN-
based models on extremely large, high-quality datasets, such
as ImageNet: pre-trained models can be fine-tuned much more
easily on supervised tasks where only few or noisy labels are
available, providing better generalization capabilities. Recently
developed machine learning techniques attempt to pre-train
deep models on unlabeled data leveraging the self-supervised
learning paradigm [12]. Self-supervised learning is a form
of unsupervised learning where the data itself provides a
mechanism to obtain the error signal needed for training. In
particular, contrastive self-supervised learning recently led to
state-of-the-art performances in the unsupervised training of
deep image models [13]. The general idea behind contrastive
self-supervised learning is to train an encoder to maximize
the agreement (usually through cosine similarity) between
different augmented views of the same data point in the
latent space [14]. In essence, an encoder trained using a
contrastive loss function learns to map similar data points
into similar representations that can be used as features
for supervised downstream tasks. Contrastive self-supervised
learning techniques have been successfully applied as pre-
training tasks in numerous deep learning field, from speech
[15], time series [16], [17], structured language models [18]
to computer vision [19], [20]. The main drawback of these
methods is that they usually require big batch sizes (with
more than 512 elements) to produce meaningful encoded
representations and to avoid possible collapsed solutions (i.e.,
solutions in which the encoder outputs a constant vector for

every input). This issue has been overcome in [21] where
the authors show that stop-gradient operations are enough
to learn meaningful representations from the data, avoiding
collapsed solutions, without the use of big batches. Let us
also highlight that, to effectively use contrastive learning, data
augmentation techniques play a fundamental role. In [22], [23]
the authors present an exhaustive set of transformations based
on spectral distortion, time distortion, dynamical filtering, and
time-warping specifically designed for multivariate time series.

A specific example of TSC is crash detection from vehicular
sensor data, that is the topic we focus on in this article. Many
crash detection systems are based on lightweight algorithms
that rely on filters and thresholds specifically designed to
run on low-cost hardware such as digital signal processors
embedded in the sensor boards, see [24], [25]. These systems
are usually tuned to have a low recall and a high precision
and can detect only very severe accidents that are usually
associated with airbag deployment. In [26] the authors present
a similar method: they first apply a smoothing technique
(based on Kalman filters or other signal processing tools)
on the inertial signals to estimate the instantaneous linear
acceleration, and then they use thresholds on the magnitude
of the linear acceleration and the vehicle speed. In [27] the
authors perform an ablation study regarding the most relevant
variables characterizing the severity of vehicle accidents. They
first separate accidents in 3 big families (front, side, and rear-
end accidents), and, for each of them, they provide a set of
thresholds for the vehicle speed and acceleration peaks needed
to infer a severity level in a scale of 1 to 3. In [28] the authors
present a crash detection strategy for motorcycles, using GPS
and inertial measurements collected by telematics e-Boxes.
After an initial self-calibration phase that aligns the sensor
reference system with a virtual ground reference frame, an on-
board monitoring system detects anomalous motion patterns
that are further processed to extract the severity of the analyzed
event. Finally, in [29] the authors develop a recurrent neural
network, jointly analyzing sensors stream and dashcam videos
data, to classify crash-related events. To deal with missing
values and noise, the authors propose a novel neural network
layer, called denoising gated recurrent unit.

To the best of our knowledge, compared to the literature
on the subject, ours is the first successful attempt to apply
modern constrastive self-supervised techniques to the problem
of crash detection purely from inertial sensors and GPS data.

III. DATASET AND DEFINITIONS

The dataset we use in this work is composed of IMU (ac-
celeration and gyroscope) and GPS speed time series recorded
from vehicles travelling in the US. Each sample in our dataset
contains acceleration from a triaxial accelerometer (sampled
at 100 Hz and with dynamical range between [−4,+4] g),
angular speed from a triaxial gyroscope (sampled at 100 Hz
and with a dynamical range between [−360, 360] degree/s),
and speed from GPS (sampled at 1 Hz but interpolated to
100 Hz to have the same duration of IMU sensors). The time
series are not further preprocessed before being fed to the
network. Each sample included in our dataset has a duration
of 16 seconds and has one of three possible ground truth labels:
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TABLE I: Data Distributions

Train Validation Test

Non-crash 162217 37082 32445
Minor crash 707 163 143
Severe crash 207 49 38

• Non-crash: this label denotes samples not associated to
any traffic accident event.

• Minor crash: this label denotes samples associated to mi-
nor crash events. These kinds of events includes physical
contact with other road objects but with minimal damage
(e.g., fender benders, small animal strikes, curb strikes).

• Severe crash: This class denotes samples associated to
police-reportable crashes, i.e., events in which visible
damage are present in the vehicles involved. This class
also contains crashes that include airbag deployment and
possible injury of drivers.

In general, the crashes in our dataset are very diverse: they
include collisions from any direction (front, lateral, rear) and
cases such as rollovers or off-roads. The distribution of the
events in our dataset is highly imbalanced: it is composed
overall of 233051 samples, of which 1013 are minor crashes,
and only 294 are severe crashes. We split our dataset into 3
stratified parts in order to obtain a train, validation, and test
set. Data distributions for each split are reported in Table I.

IV. METHODOLOGY

The deep learning model we present in this article aims
at predicting one of the categories presented in the previous
section, through the analysis of vehicular sensor data (GPS
speed and IMU). Such model is an end-to-end deep learning
architecture that we decompose in two distinct components:
an encoder backbone fψ that maps the sensor streams into
a fixed dimensional vector v, and a two-headed prediction
block that maps the latent representation v into posterior
probabilities. Formally, given IMU and GPS speed time series
[a(t), s(t), g(t)] (where a(t) denotes the acceleration, s(t) the
GPS speed, and g(t) the angular speed from gyroscope), our
encoder with parameters ψ, produces a latent representation
v:

v = fψ(a(t), s(t), g(t)) (1)

This latent representation v is mapped with two distinct
prediction heads (parametrized with φ1 and φ2) to posterior
probabilities:

P(crash) = fφ1
(v) (2)

P(severe crash | crash) = fφ2
(v) (3)

Equations 2 and 3, respectively, represent a soft score about
the presence of a crash (Minor + Severe) and of a Severe crash
given that a crash occurred. The backbone fψ is initially pre-
trained with a contrastive self-supervised method. Afterwards,
the whole architecture including parameters [ψ, φ1, φ2] is
fine-tuned to solve the supervised downstream task. In the next
subsections, we firstly introduce the architecture of the back-
bone fψ (Section IV-A), then we show the whole architecture
(fψ , fφ1

and fφ2
) used to solve the downstream task (Section
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Fig. 1: Backbone Architecture: Mono-dimensional convolutional
blocks process each input sensor data without mixing the information
of different sensor streams. A stack of bidirectional GRU merges the
features extracted from different sensors producing a time series that
is finally time-squeezed to produce a fixed dimension feature vector.

IV-B), explaining in details the structure of the prediction
heads and the supervised training loss; after that, we show
the data augmentation procedure we employ in our pipeline,
for both supervised and self-supervised tasks (Section IV-C);
finally we describe in depth our training procedure, namely,
our self-supervised pre-training method (Section IV-D) and the
supervised fine-tuning (Section IV-E).

A. Backbone Architecture

Inspired by the most recent advancements in multimodal
machine learning for time series classification [30], the pro-
posed architecture is composed of three distinct parts, as
shown in Figure 1:

• Three mono-dimensional convolutional blocks extract in-
dependent features from each sensor stream. These blocks
reduce the time duration of their input data, through
pooling operations, and enlarge the number of feature
channels.

• A stack of bidirectional gated recurrent layers [31]
(GRU), working on the concatenation of convolutional
block features, extracts joint representations merging the
independent sensor streams.

• A time-squeeze operator reduces the multivariate time
series, at the output of the recurrent network, to a
multidimensional feature vector that is used to solve the
downstream classification tasks.

Each convolutional block is a series of [Convolution 1D →
Batch Norm 1D → Rectified Linear Unit (ReLu) → Max
Pooling], where at each stage the time duration is halved by
the max-pooling operator. In our experiments, we observed
that using the max-pooling operator to downsample the sig-
nal gives better results compared to strided convolutions or
average poolings. We conjecture that this happens because
crash related information is contained in burst spikes of inertial
signals that are passed forward, layer by layer, by the max-
pooling operator.
The time squeeze operation produces the latent representation
v by concatenating the last timestamp of the forward GRU
output together with the first timestamps of the backward one,
a standard practice in classification tasks with RNNs.
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Fig. 2: Downstream Architecture: The multidimensional vector at
the output of the backbone is fed to two distinct MLP heads that are
used to produce posterior probabilities of crashes and severe crashes.

B. Downstream Task

The problem we aim to solve in this article is a multiclass
classification problem where the target variable can assume
three different ordered values (Non-crash, Minor crash and
Severe crash). Classification problems where target categories
are ordered are known as ordinal classification problems.
In principle, we should shape the error function, needed to
optimize model parameters, such that misclassifications from
non-crashes to severe crashes should provide more error signal,
compared to misclassifications from severe crashes to minor
crashes and from non-crashes to minor crashes. A suitable
approach to solve this kind of problems is to treat them as
standard regression tasks with an appropriate loss function
(e.g., l2 distance function). However, distances between cat-
egories are not well defined and finding an optimal mapping
from the categorical space to R is not a trivial task. For this
reason, following a similar approach as the one used in [32],
we reformulate the ordinal multiclass classification problem as
two distinct binary problems. In particular, we stack on top of
the backbone introduced in the previous paragraph two distinct
prediction MLP heads. A first head predicts the probability of
a generic crash (Minor + Severe), given the input time series:

Pcrash = P(crash | a(t), s(t), g(t)). (4)

A second head predicts the probability of a severe crash, given
the input time series and the fact that a crash occurred, i.e.,

Psevere|crash = P(severe | a(t), s(t), g(t), crash). (5)

The posterior probability of a severe crash is then computed
through Bayes’ rule as:

Psevere = P(severe | a(t), s(t), g(t)) = PcrashPsevere|crash. (6)

With this formalization we can treat both Pcrash and Psevere as
output of binary classifiers, and we can optimize the model
parameters using binary cross-entropy loss functions. Figure 2
shows the whole architecture used to implement this policy.
Referring to the naming convention used in the introduction
of this section, the features obtained at the output of the
backbone v = fψ(a(t), s(t), g(t)) are used in two different
streams. In the upper branch they are mapped through a
multilayer perceptron (MLP), Crash Prediction Head, to crash
posterior probabilities Pcrash = σ(fφ1

(v)) (where σ denotes
the sigmoid logistic function). Crash logits are then con-
catenated to the output features of the backbone, composing
ṽ = Concat(v, fφ1

(v)). Vector ṽ is subsequently mapped, in
the lower branch of the block scheme, through another MLP

head, Severe Prediction Head, to conditional severe crash
posterior probabilities Psevere|crash = σ(fφ2(ṽ)). The output of
the lower branch Psevere is then obtained by multiplication with
Pcrash as shown in Eq. (6). Given the two possible binarizations
of ground truth labels ycrash (positive in case of Minor and
Severe crashes) and ysevere (positive only in case of Severe
crashes), the loss function we optimize is:

L = BCE(Pcrash, ycrash) + BCE(Psevere, ysevere) (7)

where BCE denotes the binary cross-entropy loss function.
During inference, we select two distinct thresholds θcrash and
θsevere (with θcrash ≤ θsevere) that are used to map the two binary
posterior probabilities back to the original three classes.

ŷ =


Non-crash Pcrash < θcrash

Minor crash Pcrash ≥ θcrash, Psevere < θsevere

Severe crash Psevere ≥ θsevere

The adoption of the multiplicative scheme presented in this
section, together with the constraint on the thresholds (θcrash ≤
θsevere), will completely avoid ill-posed predictions, i.e., the
one in which Pcrash < θcrash and Psevere ≥ θsevere.

C. Data Augmentation

Data augmentation techniques allow generating new artifi-
cial data points by applying random perturbations on real data
samples belonging to a dataset. The applied perturbations must
have the property of not disrupting the semantic content hidden
in the samples (i.e., they should not jeopardize the association
between data points and ground truth information). In case
of vehicle-related inertial measurements, semantic-preserving
transformations are not obvious because they should match
feasibility constraints of motion. For this reason, we developed
a data-driven approach to select the family of augmentations
suitable for our problem, considering several different possible
data augmentation techniques and keeping only the ones that
gave a performance boost in the underlying classification task.
All the augmentations we describe give a positive contribution,
with no single transformation significantly outperforming the
rest.

The data augmentation pipeline is a crucial ingredient of
our method for a twofold reason:
• it allows us to leverage recently developed contrastive

self-supervised pre-training methods, founded on the abil-
ity of generating many possible plausible training samples
from a single real sample contained in our dataset;

• it helps in preventing overfitting (acting as a regularizer)
for the minority class in an imbalanced classification
problem, thus improving the generalization.

In mathematical terms, we seek a family T of transformations
from which we can extract a deterministic function t ∼ T such
that given a sample (X, y) contained in our dataset, (t(X), y)
is another suitable sample that can be used during the training
of the model, i.e., y is still a correct label for t(X). In the next
subsections, we formally introduce all the data augmentation
techniques used in our work.
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1) Random Rotation: Through the application of a random
rotation matrix we mimic a different mounting position of the
inertial sensor, without any risk of compromising the semantic
content associated to ground truth labels. In practice, a random
rotation matrix is created sampling 3 random Euler angles (α,
β, γ). The overall rotation is found by composing the three
Euler rotation matrix around canonical axis through matrix
multiplication (i.e., R = Rx(α)Ry(β)Rz(γ)).

2) Colored Gaussian Noise: The superposition of low-
passed white Gaussian noise to the acceleration and gyroscope
signals mimics different vehicle background vibrations due
to different road environments and road conditions. For each
training sample, we extract standard deviation values uni-
formly distributed in a plausible interval and then we extract
zero-mean Gaussian noise samples, independently for each
sensor and sensor axis, using these random standard deviation
values. Before adding the noise to the signal components, we
color it through the application of a low-pass filter with a
random normalized cut-off frequency in a range [ν1, ν2].

3) Random Cropping: Similar to image cropping, used in
computer vision applications, we extract a shorter random
contiguous sub-sequence from the original time series.

4) Random Permutation: Random permutation works inde-
pendently on each sensor and each sensor axis: it extracts a
random number of short fixed-length time windows in which
values are randomly permuted with a given probability.

5) Magnitude Warping: This data augmentation technique
mimics possible random changes in the amplitude of a time
series. It is applied on gyroscope and acceleration signals,
independently for each sensor axis. The idea is to modulate
each signal with a slow-varying envelope, extracted from a
Gaussian distribution with unitary mean and standard deviation
σ. To generate the modulation envelope a set of few values
vi (from 6 to 10) are extracted independently from a normal
distribution vi ∼ N(1, σ). Through cubic spline interpolation,
these values are interpolated in the number of samples N
composing the time series ṽ = CubicSpline(v,N), giving
smoothness to the random envelope. Each sensor axis x is
finally multiplied by this slow-varying envelope to obtain the
resulting output signal y = ṽx.

6) Time Warping: Time warping mimics a distortion of
the sample time of a digital signal. It is applied coherently
to both gyroscope and acceleration, in all their sensor axis.
Assume that the signals are composed of N time points and
that their discrete time axis is the vector t = [0, 1, . . . , N − 1].
This augmentation is applied through the extraction of a new
time axis from a white normal distribution centered in t, i.e.,
t̃ ∼ N(t, σI). The elements of t̃ are then clipped between 0
and N−1 in order to avoid extrapolation. Once t̃ is computed
we interpolate the original signals in this new time axis.

7) Window Warping: This augmentation aims to ran-
domly increase or decrease the duration of a random
time slice of a signal x(t), without altering too much
the samples outside this window. Given a random sig-
nal slice defined through a random temporal interval, i.e.,
xW (t) = {x(t) : tl ≤ t ≤ th}, we can decompose the origi-
nal signal x(t) = Concat(xB(t), xW (t), xA(t)), where Concat
denotes the temporal concatenation, xB(t) = {x(t) : t < tl}

is the signal portion before the random signal slice, and
xA(t) = {x(t) : t > th} the one after. The random signal slice
is then upsampled or downsampled with equal probability
by a factor 2, i.e., we compute xW (αt) with α ∈ {0.5, 2}.
Finally, the signal y(t) = Concat(xB(t), xW (αt), xA(t)) is
interpolated back to the original duration through cubic spline
interpolation.

8) Window Slicing: We apply random cropping followed
by a temporal upsampling. A large random time window is
cropped from the original time series, stretched to the original
length, and interpolated back to the original time indices
through cubic interpolation.

9) Speed Dropout: The whole speed signal is set to zero
with a given probability. We measured a drastic performance
improvement by introducing this data augmentation technique
during the self-supervised pre-training. We hypothesize that
this happens because most other data augmentation techniques
(except for random cropping) do not have any significant effect
on the slow-varying speed signal. This would make the self-
supervised task easy to solve just by computing an embedding
of the speed signal and ignoring the other two sensors.

D. Self-Supervised Pre-Training

Given the extremely imbalanced problem due to the small
number of crashes in our dataset, we use a form of contrastive
self-supervised learning as a way to obtain a pre-trained
backbone to help the supervised training on our downstream
task. In a generic contrastive self-supervised framework, two
augmented views of a dataset point x are generated sam-
pling two data augmentation operators from the same family
of augmentations T , i.e., t1 ∼ T , t2 ∼ T , x(1) = t1(x),
x(2) = t2(x). The network is then trained to match the output
representations produced from x(1) and x(2) through the max-
imization of a similarity score (e.g., cosine similarity). This
process results in models that learned to extract meaningful
features and can be easily fine-tuned on the task at hand.

In more details, in our work, we perform the self-supervised
pre-training step of our backbone model by adapting the
SimSiam framework [21] to our multimodal setting. Given a
sample x = [a(t), s(t), g(t)], a shared backbone b followed by
a projection MLP head f process two views (x(1) and x(2))
of x. Let then v(1) = b(x(1)), v(2) = b(x(2)), k(1) = f(v(1)),
k(2) = f(v(2)). A predictor MLP head h transforms the pro-
jector output of one view to match the one of the other view:
p(1) = h(k(1)), p(2) = h(k(2)). The SimSiam framework per-
forms the matching in terms of maximization of cosine similar-
ity (i.e., minimization of negative cosine similarity, see Eq. 8,
where ‖ · ‖ denotes the l2 norm, and 〈·|·〉 the dot product).

D(x, y) = − 〈x|y〉
‖x‖‖y‖

(8)

Such equation allows for a degenerate solution in which
every sample is mapped into a fixed constant output vector.
Surprisingly, the authors of [21] show, through an exhaustive
set of empirical results, that a stop-gradient operation (SG) is
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enough to prevent this issue. Equation 9 shows the complete
loss function used in [21] for a single dataset sample:

L =
1

2
D(p(1),SG(k(2))) +

1

2
D(p(2),SG(k(1))) (9)

An out-of-the-box application of the SimSiam framework
to our method is to consider only the final output of our
backbone (see Fig. 1) as input for the SimSiam projector
head, and use the loss L in Eq. (9). We propose a change
in the SimSiam loss for multimodal inputs that significantly
improves the performance on the downstream task, as we will
show in our experiments. More specifically, our idea is to add
additional loss terms depending on the intermediate backbone
outputs, similar to what is done with deep supervision [33].
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Fig. 3: Multimodal SimSiam - Backbone Modifications: Two addi-
tional branches are attached to the backbone to produce acceleration
and gyroscope specific feature vectors (va and vg respectively).

Figure 3 shows the modifications we apply to our backbone
to adapt the SimSiam framework to our multimodal setting.
We attach two auxiliary branches1 (composed of bidirectional
GRU and Time Squeeze operations as presented in Section
IV-A), one working on the convolutional embedding extracted
from the acceleration signal za, and one working on the
gyroscope embedding zg , outputting two additional feature
vectors va and vg , respectively.


a(t)

s(t)

g(t)

 Backbone f

fa

fg

h

ha

hg

v k p

ka

kg

pa

pg

va

vg

Fig. 4: Multimodal SimSiam - Overall Architecture: The backbone
outputs (v, va, vg) are fed to 3 different projection + prediction heads
to compute three separate SimSiam loss terms.

Figure 4 shows the overall block scheme of the multimodal
version of SimSiam. To each backbone output feature vectors
(v, va, vg), we attach independent projector and predictor
heads: [f , h] for v, [fa, ha] for va, and [fg , hg] for vg . From

1These two auxiliary branches are only used for self-supervised pre-
training, and are afterwards discarded during the supervised fine-tuning.

the two additional branches, we compute the following loss
terms:

La =
1

2
D(p(1)a ,SG(k(2)a )) +

1

2
D(p(2)a ,SG(k(1)a )) (10)

Lg =
1

2
D(p(1)g ,SG(k(2)g )) +

1

2
D(p(2)g ,SG(k(1)g )) (11)

that are combined with the loss L from the central branch (as
in Eq. (9)) to obtain the following multimodal SimSiam loss:

LMM =
1

3
(L+ La + Lg) (12)

The additional loss terms La and Lg , depending only on
gyroscope and acceleration embedding, force the backbone to
focus more on these sensor sources, rather than the speed,
that are more discriminative for the underlying crash detection
downstream task. In section V, we empirically show that this
modification, that keeps into account the multiple modalities
of our input sensor streams, gives a considerable gain in terms
of generalization capabilities on the downstream task.

E. Supervised Fine-Tuning with Negative Sampling

Once the backbone has been pre-trained using the self-
supervised technique introduced in the previous paragraph,
we attach the prediction heads needed to solve the ordinal
downstream classification task following the formulation pre-
sented in Section IV-B. To compensate for the evident class
imbalance present in our dataset, we adopt a training strategy
where, at each training epoch, we only select a random subset
of negative (non-crash) examples. Supposing that the total
number of accidents (Minor or Severe) in our training set is
K and the batch size used in the training procedure is B, at
the beginning of each training epoch, we sample K · (B − 1)
negative samples. We then populate the training data for that
specific training epoch with all the K accidents present in
our dataset plus K · (B − 1) randomly selected non-accident
samples, for a total of K ·B training samples. The idea behind
this training technique is that, on average, each training batch
will contain a crash sample and B − 1 non-crash samples.

V. RESULTS

We present our experimental results using the dataset intro-
duced in Section III. For all the experiments in this section,
we employ early-stopping on the validation set for selecting
the best model obtained during the training procedure, and
we show the results on the test set obtained using the best
validation model. We measure the performance using the
area under the precision-recall (PR) curve, also known as
average-precision score (AP), which is particularly suitable
for imbalanced classification problems. This score is obtained
by integrating the PR curve that provides precision and recall
points for different values of binary decision threshold: it
assumes a value of 1 for a perfect classifier, and it decreases
for each false positive misclassification performed by the
model. Because with our model formulation (presented in
Section IV-B) we are explicitly solving two distinct binary
problems, we report performance metrics on the generic crash
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TABLE II: Architecture details (backbone)

a(t), 3 g(t), 3 s(t), 1
11 Conv, 16 11 Conv, 16 11 Conv, 16
7 Conv, 24 7 Conv, 24 7 Conv, 24
5 Conv, 48 5 Conv, 48 5 Conv, 48
5 Conv, 64 5 Conv, 64 5 Conv, 64

Concat
GRU, 512

Dropout 0.5
GRU, 512

Time Squeeze
Output Features, 512

class (Minor + Severe) and the Severe one. We organize this
section as follows:
• We show the implementation details of our approach:

model structure, training, and augmentation strategies.
• We report a set of extensive experiments to compare the

performance of our pipeline with several baselines, and
discuss the impact of each contribution.

• We analyze computational requirements for training and
inference.

A. Implementation Details

Table II shows the details of each layer used in our back-
bone: Conv layers are a stack of [Convolution 1D → Batch
Norm 1D → ReLu → Max Pooling], and for each block we
indicate the filter length and the number of output channels,
respectively. The stack of bidirectional gated recurrent units
is composed of two layers of size 512. We found dropout
(with a dropout probability of 0.5) beneficial to improve the
generalization capabilities of our model if applied after the
output of the first GRU layer. After the Time Squeeze block,
the output of the backbone is a 512-dimensional feature vector.
The MLPs used for the prediction heads are composed of a
single hidden layer with 256 units and ReLu non-linearity.

We optimize the self-supervised loss function using Stochas-
tic Gradient Descent (SGD) optimizer (momentum = 0.9,
batch size = 256), for 200 epochs with 10 epochs of linear
warm-up (with maximum learning rate of 0.05) followed
by 190 epochs of cosine annealing. During the downstream
supervised fine-tuning we train for 20 epochs with Adam
optimizer (learning rate = 10−4, for both the backbone and
the prediction heads, batch size = 64). We tried to use a
lower learning rate for the backbone, but we obtained a
negligible improvement, thus we decided to keep the simpler
configuration.

Table III shows the parameters employed in our data
augmentation pipeline for both self-supervised pre-training
and supervised fine-tuning. During the self-supervised pre-
training, we employ an aggressive data augmentation policy:
we apply all the data augmentation techniques (including
Speed Dropout) with only a small probability (0.1) of skipping
an augmentation step. For the supervised training, instead, we
use a different data augmentation strategy: with probability 0.5
for each step, we apply a Random Rotation, we add Colored
Gaussian Noise and then a single augmentation extracted
randomly in [Random Permutation, Magnitude Warping, Time

Warping, Window Warping, Window Slicing]. In all cases,
Random Cropping is always applied at the end.

B. Model Benchmarks

In this section, we show the performance gain introduced
by our model, alongside our custom training procedure (self-
supervised pre-training + supervised fine-tuning), compared to
state-of-the-art deep neural networks for time series classifi-
cation and thresholds based methods.

Following the suggestions provided in [7] and [9], we
compare with a one-dimensional ResNet2 and InceptionTime
as strong NN models for TSC.

Then, we build a threshold-based baseline inspired by [24],
[25] (“Baseline” in the following figures and tables). We only
consider the acceleration on the longitudinal and transversal
vehicle axis (x and y). The axis orthogonal to the ground plane
is discarded because it often shows large amplitude peaks in
correspondence to speed bumps and potholes. We compress
both x and y components into a single value, obtaining the
norm axy(t) =

√
ax(t)2ay(t)2. We apply a low-pass filter

with a cut-off frequency of 0.25 Hz to reduce false positives
due to noise. Then, we take the maximum of this smoothed
acceleration norm, i.e., a∗ = maxt axy(t), as the value we use
for the final classification via a threshold.

In Table IV we report the AP score obtained on our
test set for the different methods. Figure 5 shows the full
Precision-Recall (PR) curves. From the reported results, we

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Minor + Severe

Baseline, AP = 0.61
ResNet, AP = 0.8
InceptionTime, AP = 0.83
Ours, AP = 0.9

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Severe

Baseline, AP = 0.46
ResNet, AP = 0.54
InceptionTime, AP = 0.52
Ours, AP = 0.76

Fig. 5: PR curves for generic crash detection (Minor + Severe
crashes vs Non-crashes) on top, and for Severe only (Severe vs rest)
on bottom. Dashed blue lines refer to the threshold-based baseline,
orange lines refer to ResNet, green lines to InceptionTime, and the
red lines to our model. The first point is set to Precision=1, Recall=0
for all methods by convention.

can appreciate a huge performance gain of our proposed
method (+0.24, more than 40% improvement) in the detection

2As in [7], we use a standard ResNet model for image classification where
bi-dimensional blocks are replaced by their mono-dimensional counterparts.
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TABLE III: Data augmentation parameters during self-supervised and supervised training. For each transformation, we report its parameter
range and the sensors on which it is applied. With σD we denote the sensor-specific standard deviation computed over the training set.

Self-Supervised Supervised Sensors

Random Rotation - Angle Range [-45◦, +45◦] [-10◦, +10◦] Acceleration, Gyroscope
Colored Noise - σ Range [σD/100, σD/10] [σD/100, σD/10] Acceleration, Gyroscope
Colored Noise - [ν1, ν2] [0.1, 1.0] [0.1, 1.0] Acceleration, Gyroscope

Random Cropping - Crop Length 14 s 14 s Acceleration, Gyroscope, Speed
Random Permutation - Window Length 20 ms 20 ms Acceleration, Gyroscope

Random Permutation - Permutation Probability 0.5 0.5 Acceleration, Gyroscope
Magnitude Warping - σ σD/3 σD/3 Acceleration, Gyroscope

Time Warping - σ 0.2 0.2 Acceleration, Gyroscope
Window Warping - Window Duration % Range [5%, 15%] [5%, 15%] Acceleration, Gyroscope
Window Slicing - Window Duration % Range [90%, 100%] [90%, 100%] Acceleration, Gyroscope

Speed Dropout - Probability 0.7 0 Speed

TABLE IV: Test performance (best model selected on validation)

Method Crash (Minor + Severe) AP Severe Crash AP

Baseline 0.61 0.46
ResNet [7] 0.8 0.54

InceptionTime [9] 0.83 0.52
Ours 0.90 0.76

of Severe accidents compared to the second best. All other
methods have much worse precision on the highest-confidence
predictions. Also on the Minor+Severe task, our method signif-
icantly outperforms the other approaches (+0.07, around 9%
improvement). We believe that this performance gain is due to
several contributions: the backbone architecture, specifically
designed for multimodal inputs; the custom prediction head
and loss, that fully exploit the intrinsic order of the classes; and
our custom training procedure that, through self-supervised
pre-training and domain-specific data augmentations, prevents
overfitting and provides better generalization capabilities –
crucial aspects on such extremely imbalanced problems. In
the following two subsections we provide a deeper discussion
of each of these components.

C. Self-Supervised Pre-Training - Discussion

We show the performance gain introduced by the self-
supervised pre-training by estimating the probability distribu-
tion of the AP score (in terms of mean and standard deviation)
obtained by fine-tuning the pre-trained model multiple times3

and comparing it with the AP scores obtained with models
trained from scratch with randomly initialized weights. More-
over, following a common practice used in self-supervised
learning [14], we estimate the AP score obtained when only
a subset of training samples is available (25% and 50%), to
show that self-supervised pre-trained models generalize better
when trained on fewer annotated samples, compared to their
randomly initialized counterpart.

Figure 6 shows AP distributions (Minor + Severe on top
and Severe on bottom) described in terms of mean (diamond
marker) and standard deviation (vertical line) for different
fractions of training samples used during supervised learning
and different backbone weights initialization methods. We
consider three possible initialization strategies:

3Even starting from a self-supervised pre-trained backbone, training is not
deterministic (prediction heads are randomly initialized).
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0.70

0.75

0.80
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Fig. 6: Self-supervised pre-training - AP comparison: The x-axis
indicates the percentage of training samples used during supervised
learning. Blue distributions refer to the models trained from scratch
with random initialization, red ones to models pre-trained using
vanilla SimSiam, and green ones to models pre-trained with our
multimodal SimSiam. The top figure refers to the generic crash
detection problem (Minor + Severe), the bottom to the Severe one.

1) Random Initialization: we randomly initialize the
weights of the network (both backbone and prediction
heads), and we train it from scratch.

2) SimSiam: we pre-train the backbone accordingly to the
SimSiam framework without the multimodal modifica-
tions (see Section IV-D). Once the backbone is pre-
trained, we attach the randomly initialized prediction
heads and fine-tune the whole architecture.

3) Multimodal SimSiam: we perform the self-supervised
pre-training step using the multimodal version of the
SimSiam framework (see Section IV-D).

The distributions of the AP scores shows a clear performance
boost when the backbone is pre-trained using a self-supervised
method even when very few training samples are available.
Our modification of the SimSiam framework, accounting
for multiple modalities, introduces a noticeable improvement
compared both to the standard version of SimSiam and to a
standard random initialization. Note in particular, that for the
detection of Severe crashes, our multimodal self-supervised
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pre-training allows us to reach a superior performance (in
terms of AP) with only half of the training samples compared
to a supervised training using the entire dataset. This is of
the utter importance in such a problem, where very few (and
extremely rare) positive samples are available.

D. Data Augmentation - Discussion

To prove the effectiveness of our custom data augmentation
pipeline during supervised training4, we turn it on and off, and
for both cases, we estimate the distribution of the AP scores
over 10 runs.

Off On
Data Augmentation Off/On

0.83

0.84

0.85

0.86

0.87

0.88
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0.91
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Multimodal SimSiam

Off On
Data Augmentation Off/On

0.575
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0.625
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0.675
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0.725

0.750
Severe

Random Initialization
Multimodal SimSiam

Fig. 7: Data Augmentation Off/On - AP comparison: Blue
distributions refer to the models randomly initialized and trained from
scratch, red ones to models fine-tuned starting from weights obtained
with Multimodal SimSiam. The figure on the left refers to the generic
crash class (Minor + Severe), the one on the right to the Severe class.

Figure 7 shows AP scores obtained when we activate or
deactivate the data augmentation pipeline. When we train the
model starting from randomly initialized weights, our data
augmentation pipeline plays a very big role in counteracting
overfitting, yielding an average AP gain of 0.02 points for
Severe and 0.03 points for Severe+Minor. In the case where
we fine-tune starting from initial weights obtained with Mul-
timodal SimSiam (in red in Fig. 7), only a small number
of training epochs are needed to reach convergence, and the
performance gain introduced by data augmentation is smaller.
Still, it is noticeable especially for Severe crashes, where we
obtain a 0.02 improvement.

E. Ordinal Classification - Discussion

To motivate our choice of formulating the problem as
an ordinal multiclass problem, we perform a study where
we compare our proposed approach, that has two prediction
heads and a custom loss (see Section IV), with a standard
categorical cross-entropy loss. We use the same backbone, but
using a single 3-dimensional prediction head with a softmax
activation. Compared with our proposed custom architecture
and loss, the AP (average on 10 runs) drops from 0.883 to
0.862 and from 0.672 to 0.614 on generic and severe crashes
respectively, when training randomly initialized models.

4This ablation study does not refer to data augmentation during the con-
trastive pre-training procedure: without strong data augmentation, it collapses
reaching no meaningful result.

F. Computational requirements - Discussion

Our proposed model is compact, with only 2.5M parame-
ters, resulting in a small memory footprint (around 11MB).
For comparison, ResNet and InceptionTime have respectively
more than 4.4M and 4.9M parameters. To run inference on
a 16-second sample, our model takes 0.032 seconds on a
standard Intel CPU (i7-8665U @1.90GHz) and 0.095 seconds
on a Cortex-A72 CPU @1.5GHz, a common ARM CPU used
in phones and embedded devices. Regarding the training time,
it requires around 4 hours for self-supervised pre-training on
a NVidia V100 GPU, and around 45 minutes for fine-tuning.

VI. CONCLUSION

In this paper, we present a novel deep learning pipeline
for crash detection from vehicular sensor data. The proposed
pipeline is composed of a custom neural architecture, a self-
supervised pre-training technique, and a set of data aug-
mentation functions. We formulate the problem of detecting
accidents alongside their severity from multimodal sensor
streams as an ordinal multiclass classification problem. We
validate our approach on a big dataset of IMU/GPS time
series, containing 233051 samples of which only 0.56% are
crashes. For the first time on a similar task, we employ a
self-supervised pre-training strategy together with a custom
pipeline of data augmentations to improve the generalization
capabilities in this extremely imbalanced setting. We carefully
perform ablation studies to show the impact of particular
design choices, and we compare our approach with state-
of-the-art models for time series classification. Our approach
reaches an AP score of 0.90 in the detection of generic crashes,
and a score of 0.76 in the detection of the extremely rare
severe crashes, which correspond to an improvement of 9%
and 40%, respectively, when compared to the state-of-the-art
models InceptionTime and ResNet. Our experiments show that
domain-specific augmentation techniques and self-supervised
pre-training are instrumental in significantly improving the
performance of our model.

Future research directions might consider video data to
enrich multimodal input sensor streams, providing additional
semantic understandings of the crash scene: consider, for
instance, the problem of identifying and describing the cause
and dynamics of the crash. Another interesting development
would be to study if the proposed architecture could be made
even smaller and faster, with neural architecture search or
other network optimization techniques. Finally, we also believe
that the proposed approach and data augmentations could be
successfully applied to other problems with similar input data.
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