
THIS WORK HAS BEEN SUBMITTED TO THE IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Detection of stop sign violations from dashcam data
Luca Bravi∗†, Luca Kubin∗†, Stefano Caprasecca†, Douglas Coimbra de Andrade†, Matteo Simoncini†,

Leonardo Taccari†, Francesco Sambo†‡

Abstract—In this article we present a novel machine learning
pipeline for automatic detection of stop sign violations from
dashcam videos, Inertial Measurement Units (IMU) and Global
Positioning System (GPS) data. We developed a two-step ap-
proach, including a detector (Stop Sign Detector) capable of
identifying stop signs presence, position, and size within video
frames, followed by a classifier (Stop Violation Classifier) that
assesses the presence of violations along with a severity score.
The Stop Sign Detector is a deep convolutional neural network
(CNN) for image classification, which leverages the information
contained in its deeper layer feature maps in order to extract
estimates of position and size of the detected stop signs. The
Stop Violation Classifier fuses the information provided by the
Stop Sign Detector with IMU/GPS data to assess the presence
and severity of a stop sign violation. The proposed approach has
been tested on several thousands of real-world videos, recorded
from US vehicles, in all kinds of weather conditions, times of the
day and environments. Our method achieves an area under the
precision-recall curve of 94% with a required computational time
of 2.4 seconds to process a 16-second video entirely on CPU.

Index Terms—Stop Sign Violations, Convolutional Neural Net-
works, Machine Learning, Dashcam, GPS.

I. INTRODUCTION

STOP sign violations are among the main causes of road
accidents: each year in the US, nearly 700,000 police

reported crashes occur at stop sign intersections, around 1/3
of these involve injuries, and more than 3,000 are fatal [1].
Systematic detection of stop sign violations is thus of the
utmost importance in fleet management software and in driver
coaching platforms, where data extracted from connected
vehicles are processed to identify dangerous behaviors and
to coach drivers to improve their driving style. An example of
a machine learning system that provides an additional layer
of semantics to the analysis of crash and near-crash events is
the one proposed in [2], and included in the Verizon Connect
video product. The detection of driving violations would
also be extremely useful to support researchers in Intelligent
Transportation Systems and decision makers in municipalities
or government agencies. For instance, a database of stop sign
violations would help in the identification of intersections
that are more subject to driver violations or would enable
analysis on road or weather conditions that are more likely
to cause a crash in the presence of stop sign violations. This
kind of analysis could even recommend, in some cases, more
appropriate traffic control systems, such as traffic lights or
roundabouts.

In this article we propose a machine learning method,
trained and tested on real-world data, that combines video,

∗These authors contributed equally.
†Verizon Connect Research, Florence, Italy
‡Email: francesco.sambo@verizonconnect.com

GPS speed and IMU data to automatically identify events
containing a stop sign violation. Note that we do not leverage
GPS positions in conjunction with public maps. This choice
was motivated by the fact that no existing map service pro-
vides sufficiently high-quality information around stop signs.
Moreover, locations provided by GPS are not accurate enough
to give a reliable understanding of intersection crossings (in
urban areas, the average GPS position error is around 10
meters [3]).

The proposed approach decomposes the detection of stop
sign violations into two distinct phases. In the first phase we
analyze the video frame by frame, in order to estimate the
probability that stop signs are present in its content. In the
second stage of our pipeline, we use the generated probabilities
along with the GPS speed and IMU information to assess
whether a stop sign violation happened, and possibly the
severity of the analyzed event. Our main contributions are:

• a fast and effective stop sign detector based on a convolu-
tional neural network (CNN) architecture, that is trained
in a semi-supervised way to identify the presence and the
location of stop signs in dashcam images of real roads;

• a machine learning pipeline, based on features extracted
from video and sensor data, able to discriminate whether
a stop sign violation is present in a video, and also
classify the severity of the violation into one of three
possible different classes;

We also provide an extensive set of experiments, in which
we evaluate different network architectures, from shallower to
deeper, working on different frame sizes, in order to assess the
feasibility of running the entire pipeline within the vehicle,
targeting edge and mobile devices. On average, our method
achieves an area under the precision recall curve up to 95%
(97% during daytime and 93% during night) with a required
computational time between 2.4 s and 15.7 s to process a 16
second video on a CPU1.

The paper is organized as follows: in Section II we review
the existing literature; in Section III we describe our proposed
approach, highlighting the way in which we composed our
dataset and the employed training procedure; finally, experi-
mental results are shown in Section IV followed by concluding
remarks in Section V.

II. RELATED WORK

The problem of automatically detecting stop sign violations
from vehicle sensors has not yet received much attention.
To the best of our knowledge, the only work that addresses
it is [4], where the authors design a module capable of

1Measured on a Intel(R) Core(TM) i7-6820HQ CPU @ 2.70GHz, see
Section IV for more details.

THIS WORK HAS BEEN SUBMITTED TO THE IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2

alerting drivers in dangerous situations, through the emission
of acoustic messages. In this work the authors analyze, in a
real-time setting, video frames coming from 2 digital cameras
mounted on the vehicle roof, along with signal coming from
the speedometer embedded inside the vehicle. Among the
considered dangerous situations there are stop sign violations.
Similarly to us, they adopt a two phases approach: a first
phase consisting in stop sign detection, followed by a stop sign
violation assessment. The authors perform stop sign detection
by means of a classical computer vision technique: after illu-
mination enhancement of the acquired video frames, needed
to make their pipeline independent of lighting conditions, they
apply a color based segmentation on image regions that are
likely to contain traffic signs; finally, they classify the proposed
segments by means of shape matching techniques. In order to
assess if a violation is present in the analyzed footage, they
check whether the vehicle speed falls to zero in proximity
of the detected stop signs. The authors claim to reach an
overall accuracy of about 92% with the stop sign detector
module, by analyzing about 5000 images recorded during a
drive test, while the performance of the violation detector
is not specified because it was defined as a simple rule on
the vehicle speed. There are some key differences between
the method we propose and the one described in [4]. First
of all, we propose a machine learning method that is more
robust to noise, compared to a rule based method with a
simple threshold on the vehicle speed, allowing us to cope with
inaccurate sensor data (e.g., the GPS speed which is a noisy
estimate of the actual speed). Second, the use of a modern
deep learning method for stop sign detection gives much better
generalization capability than more traditional techniques [5],
[6], without the need for employing illumination enhancement
techniques to handle different lighting conditions. Third, we
include tests on almost 40 hours of videos, recorded in a real-
world environment by hundreds of different drivers in different
time of the day and weather conditions, thus, we give a better
experimental estimate of the accuracy that our system can
reach compared to a single drive test. Finally, our proposed
method allows us also to classify the severity of the committed
violations and not only detect their presence.

Clearly, an important sub-task of the problem we aim to
solve is the detection of the stop sign within a video or image.
The related problem of traffic signs detection and classification
has been widely investigated. In recent years, convolutional
neural networks have proven to be extremely effective in
both image classification (assessing whether a target class of
objects is present in a image or not) and object detection
(the problem of identifying an object along with the area
that it occupies within the image), clearly outperforming more
traditional techniques [7]. A pioneer work using a CNN for
traffic signs classification is [8] where a convolutional neural
network reaches better-than-human performance, obtaining a
recognition rate of 99.46% over the German Traffic Sign
Recognition Benchmark [9]. Even though this dataset presents
challenging aspects (e.g., different lighting conditions and a
natural environment), it only contains images that are already
cropped around the traffic sign. The dataset German Traffic
Sign Detection Benchmark [10] instead targets the problem of

traffic sign detection (i.e., joint classification and localization)
in a road scene. This dataset was used in the survey [11]
to compare state of the art object detection systems, pre-
trained on the Microsoft COCO dataset [12] and fine tuned
on German Traffic Sign Detection Benchmark. The survey
shows that Faster R-CNN [13] obtains the best performance
in terms of mean average precision (mAP), while R-FCN [14]
provides the best trade-off between accuracy and execution
time. In [15], the authors report state of the art performance
on another dataset, the Swedish Traffic Signs Dataset [16]. In
their framework they use two separate convolutional neural
networks, following an approach similar to the one used in
R-CNN [17]: they first use a fully convolutional network to
generate region proposals, containing possible traffic signs,
and then a CNN classifier able to eliminate false positives
and to discriminate among different detected signs. The major
novelty of their work is to train a fully convolutional neural
network, usually designed for semantic segmentation tasks
[18] using bounding-box level annotations. Another important
idea the authors use in their work is to exploit priors on the
locations of traffic signs, i.e., that they usually appears in the
left/right side of the image frame. In [19], the authors tackle
the traffic sign detection problem focusing on real-world, noisy
images. Their major contribution is the creation of a big traffic
sign benchmark dataset, with 100000 images containing 30000
traffic sign instances (Tsinghua-Tencent 100K benchmark). In
[20], the authors propose a different approach to deal with
the problem that traffic signs are small objects compared to
the image size and that they are hard to be distinguished
from false targets in complex street scenes without any con-
text information. They propose a stacked model composed
of a convolutional encoder, followed by a recurrent neural
network. The recurrent neural network, equipped with an
attention mechanism, explicitly focuses on local regions of
interest allowing better detection performance. In [21], the
authors propose an incremental framework from traffic signs
detection, tracking, and recognition from driving videos. In
their pipeline, the authors split the tracking algorithm into
2 distinct pieces: a motion and appearance models, followed
by a scale-based weighted classifier giving higher votes to
large-scale detected signs to improve the overall recognition
performance. On a different research line, in [22], the authors
show the crucial limitations related to sensor fusion algorithms
when processing heterogeneous vehicle sensor data. Similarly,
in [23] the authors propose a distributed filtering algorithm to
mitigate noisy and partial observations in vehicular data.

III. METHODOLOGY

As stated in the introduction, and similarly to [4], we
decompose the problem of detecting stop sign violations into
two distinct sub-tasks: we first assess the presence of stop
signs within the content of a video; then, if any stop has been
detected, we assess the presence of a violation along with
its severity level. Figure 1 shows an overview of the whole
pipeline of the proposed method. The footage recorded by the
dashcam is processed, independently frame by frame, by the

THIS WORK HAS BEEN SUBMITTED TO THE IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 3

Fig. 1. Stop Sign Violation Pipeline - The input video is initially processed by the Stop Sign Detector that outputs, for every input frame t, the probability
p(t) that at least a stop sign is present in its content. Stop sign probabilities are then fused together with speed and acceleration by the Feature Extractor
block. The obtained features are fed to the Stop Violation Classifier that outputs the severity of the analyzed event.

Stop Sign Detector that outputs the probability that at least
a stop sign is visible in the image (i.e., it compresses the
whole video into an univariate time-series containing at every
timestamp the probability of the presence of at least a stop sign
in the frame content). Time varying stop sign probabilities are
then fused with GPS speed and vehicle acceleration and then
processed into a set of features by the Feature Extractor block.
The obtained features are then used by the Stop Violation
Classifier (implemented with a Random Forest Regressor) that
returns the severity of the analyzed event.

The main technical challenges solved by our approach are
related to the several sources of uncertainty that appear in a
realistic setting:

• dashcam videos often have suboptimal lighting or visibil-
ity conditions, and cameras can have different installation
positions;

• the time instant in which the vehicle crosses the intersec-
tion is not precisely known: stop signs might disappear
from the scene at a variable distance from the intersection
crossing;

• the GPS speed is a noisy estimate of the instantaneous
speed: various sources of noise affects the GPS speed es-
timate on both phase (delay) and amplitude components;

• acceleration measurements might be affected by a rotation
error due to suboptimal camera mounting position or
miscalibration of the IMU sensors.

These sources of uncertainty are the reasons for which we
employ an end-to-end machine learning pipeline, instead of
manually defined thresholds applied over the vehicle speed (as
done in [4]). Indeed, we empirically show in Section IV that
the use of single thresholds in a realistic setting is significantly
less effective than the adoption of machine learning models
that exploit the correlations between several features describ-
ing the driver behavior in relation to the stop sign intersection.

In the remaining of this section, we first describe the
data we used for our experiments and define the problem
(III-A), afterwards we describe the semi-automatic procedure
we developed to extract our ground-truth data for training the
Stop Sign Detector (III-B). Then, we describe the details of
each component of the pipeline: the Stop Sign Detector (III-C),
the Feature Extractor (III-D) and the Stop Violation Classifier
(III-E).

A. Stop Violation Dataset

The stop violation dataset is composed of 8,931 videos
recorded from dashcams installed on vehicles traveling in
the US. Every video included in the dataset comes with
associated GPS speed and accelerometer data. Videos are
recorded in all kinds of weather conditions, times of the day
and environments. All the samples contained in the dataset
are manually annotated into three different semantic classes,
representing three distinct levels of severity:

• No-violation: in this case, either the video does not
contain a stop-controlled intersection, or, if there is any,
the driver comes to a complete stop before entering the
intersection (i.e., the driver halts the vehicle at the stop
line).

• Mild-violation: the vehicle does not stop completely
before the intersection, even though it slows down signif-
icantly before reaching the stop line. This kind of viola-
tion, also known as ”rolling stop”, is very common, and
it usually happens when the driver effectively considers
the stop sign as a yield sign.

• Severe-violation: this class includes videos where the
driver reaches the stop line at high speed without slowing
down before crossing the intersection. In these situations,
the driver compromises its awareness of other vehicles
approaching the same intersection in the orthogonal di-
rection.

In our data, the class distribution is significantly imbalanced:
only 42% of the videos contain a stop-controlled intersection
and among them almost 80% contain a violation. Among
violations, only 30% are severe, further motivating the need
for assessing the severity as well as the presence of violations.

B. Stop Sign Dataset

Besides the 8,931 labeled videos, we have several millions
of unlabeled video samples at our disposal. We exploit this
source of unlabeled data in order to build a dataset of frames
containing stop signs (positive samples) and frames without
stop signs (negative samples) that we use to train our custom
Stop Sign Detector.

In Figure 2, we show some examples of our data. Images
are obtained from cameras with a large field of view, where
the size of stop signs is typically very small compared to the

THIS WORK HAS BEEN SUBMITTED TO THE IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 4

Fig. 2. Example of frames with stop signs extracted from our dataset.
Stop signs are small, and weather/lighting conditions can be challenging.

whole scene; moreover, videos are recorded in all sorts of real-
world conditions, including challenging visibility situations.

Looking for video frames containing stop signs within a set
of millions of unlabeled images is a hard task. To facilitate this
we can exploit an out-of-the-box object detector to find candi-
date frames containing stop signs. We decide to use YOLOv3
[24] provided in the deep learning framework GluonCV [25],
[26] pre-trained on Microsoft COCO dataset. This choice is
motivated by the fact that COCO dataset is a large, highly
curated, extremely popular dataset that provides a stop sign
category among its set of annotated objects. However, the stop
sign category of the COCO dataset contains several traffic
signs incorrectly labeled as stop sign, as well as stop signs
captured from behind, not relevant and misleading for our
task (see Figure 3). This leads to systematic false positive
detections produced by YOLOv3 trained on COCO, clearly
detrimental for the performance of our system. Therefore, we
developed a semi-automatic procedure to clean our dataset
from these false positives.

In order to populate our dataset we first choose 130,000
images from a set of ∼ 10k videos by running YOLOv3 on
each frame. In each video, a subset of frames containing stop
signs detected with high confidence by the object detector are
selected as positive samples. For each positive example, we
also randomly sample another frame from the same video,
not containing stop signs, in order to populate the negative
class. Including negative samples from the same videos used
for extracting positive ones is crucial to avoid bias due to the
lighting conditions or the camera position and inclination.

After the initial population is selected, we apply the follow-
ing semi-automatic pruning procedure to get rid of the false
positive stop sign detections. We only focus on the population
of positive selected samples P and we use the following semi-
supervised iterative label correction procedure:

1) manually annotate a small set Perr ⊂ P of examples of
label error and a small set Pok ⊂ P of correct labels

2) train a model 2 Φ on {Perr, Pok} to identify wrong labels
3) run Φ on P \{Perr, Pok} to identify the set of examples

that, according to the model Φ, have a wrong label with
very high confidence (≥ 0.95)

2In our experiments we use ResNet18 [6] mainly for its fast training
procedure.

Fig. 3. Examples of incorrect stop sign annotations in COCO (leftmost
images) and incorrect YOLOv3 detections on our data (rightmost images).

4) add such examples (if present) to Perr and go to 2)
5) otherwise, exit.

At each iteration, we use the highest confidence outputs of the
model Φ trained at the previous iteration to expand the set of
examples with incorrect labels. On our dataset, this procedure
needs a small initial set of manually identified errors to fix
around 10,000 incorrect labels.

Finally, once this cleaning procedure is concluded, we split
our dataset into 2 parts: a training set (∼ 115000 images) and
a validation set (∼ 15000 images). We use the validation set
to evaluate models during training, avoiding overfitting.

Note that one could think of simply using model Φ, in
conjuction with YOLOv3, to filter out the false positive
detections. However, using two models would be too computa-
tionally demanding, and this is why we choose to use a single
lightweight binary model, as described in the next subsection.

C. Stop Sign Detector

The main purpose of the Stop Sign Detector is to recognize
the presence of a stop-controlled intersection. Since our dataset
does not contain bounding box level annotations, but only
binary labels referring to the presence or the absence of stop
signs within video frames, we use a binary image classifier
estimating the probability that at least a stop sign is present in
the frame. However, an object detection model could provide
useful additional information compared to an image classifier
– namely, the position and size of the detected objects. If pro-
vided, this kind of information could be used to filter out stop
sign detections not pertinent to the driver vehicle lane (i.e., the
lane on which the vehicle mounting the dashcam is traveling),
that would cause false detections of violations. However, with
a simple adaptation of a modern CNN architecture, we show
that it is still possible to recover some information about object
sizes and positions.

Figure 4 shows the structure of the Stop Sign Detector.
The upper branch is a ResNet [6] architecture, decomposed in
its main building blocks (i.e., a stack of convolutional layers
followed by a global average pooling and a fully connected
layer). Note that the ResNet architecture can be easily replaced
by any CNN presenting this structure. The input RGB image
is first processed by a sequence of convolutional layers,
obtaining a feature map F ∈ Rh×w×c, where c is the number
of channels, and (h,w) are its spatial dimensions (height
and width). This tensor F = {Fijk} (where i and j span
respectively the height and width dimensions of the tensor,
and k spans the channels one) is spatially aggregated with a

THIS WORK HAS BEEN SUBMITTED TO THE IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 5

global average pooling, obtaining a vector s of size c, where:

sk =
1

hw

h∑
i=1

w∑
j=1

Fijk (1)

Posterior probabilities y are obtained by mapping the vector s
through a fully connected layer with weights ω ∈ Rc and by
applying the sigmoid σ activation function on the result:

y = σ

(
c∑

k=1

skωk

)
(2)

The lower branch of the architecture implements an unsuper-
vised method for retrieving information about detected stop
sign positions and sizes. Let’s consider each position i, j of
the tensor F being the vector Fij ∈ Rc. By taking the inner
product between Fij and the weights ω ∈ Rc of the fully
connected layer and by passing the obtained result through an
element-wise rectified linear unit (ReLu) [27], we compute:

fij = ReLu(Fij · ω) = ReLu

(
c∑

k=1

Fijkwk

)
(3)

The obtained matrix f ∈ Rw×h, known as saliency map
[28], is a convenient representation of the spatial distribution
of the network activations. As one can see from Figure 5, when
the input image contains stop signs, the network activates its
neurons in their neighborhood (i.e., the power of f is localized
around the stop sign positions). Instead, when stop signs are
not present in the input image, the activation is negligible
almost everywhere. Thus, in case that at least a stop sign is

Fig. 4. Stop Sign Detector. A sequence of convolutional layers extracts
features from the input frame. The extracted features are used by the upper
branch of the block scheme to perform classification and by the lower one to
compute the saliency map.

Fig. 5. Saliency map computed from the stop sign detector. When the
image contains stop signs, the network focuses its spatial activation in the
neighborhood around stop sign positions.

present in the frame, to obtain information about the size and
position of the detected stop signs it is sufficient to extract
circular Gaussian blobs (e.g., as showed in [29], [30]) from a
gray-scale representation of the saliency map: every blob has
a mean and a radial standard deviation, that are good proxies
for position and size of the stop signs in the image. This
approach provides an extremely efficient model that performs
both detection and classification in one shot, without relying
on computationally demanding object detection models. More-
over, the localization information emerges from the model in
a completely unsupervised way, since we trained the network
only with annotations related to the presence of a stop sign,
not its position.

All the networks we consider in our work are initially
trained on the Imagenet dataset and then fine-tuned on our
domain specific dataset. We use stochastic gradient descent
with momentum as optimizer (learning rate = 0.001, momen-
tum = 0.9) and we scale down the learning rate by a factor
0.1 every 10 epochs. We train the networks for a total amount
of 50 epochs, keeping track of the models that achieves best
validation accuracy. In order to improve the performance of the
Stop Sign Detector, we employ a pipeline of data augmentation
during training randomly jittering the image brightness by a
factor 0.5, and randomly rotating the image in the range [-
10, 10] degrees [31]. We measured in our experiments that
these kinds of random transformations improved the validation
accuracy of the Stop Sign Detector by almost 1% of accuracy.
With this architecture and our training procedure, we reach an
accuracy on the validation of more than 99% at the stopping
epoch, which is considerably better than 95% obtained with
the implementation of YOLOv3 trained on COCO provided by
GluonCV3. Moreover, our model is able to generalize without
fine-tuning on the German Traffic Sign Detection Benchmark,
where it can correctly detect 31 out of 32 stop signs.

D. Feature Extractor

The aim of the two phases pipeline is to first assess whether
the vehicle crosses a stop-controlled intersection and, in case a
crossing occurs, to identify whether there is a violation along
with its severity. In order to assess the severity, in cases in
which a stop crossing is present within the video content, we
merge the information provided by the Stop Sign Detector
together with the telematics data (i.e., speed and acceleration)
by extracting features capable of capturing the dynamics of
the stop crossing. Along with features related to stop crossing
dynamics, we extract features related to the trajectories of the
detected stop signs, in order to decrease the number of false
positive violations detected by our system. In other words, our
feature extraction procedure transforms time varying-signals
(i.e., speed, acceleration, stop sign probabilities, and saliency
maps) into multi-dimensional vectors containing important
characteristics used by the Stop Violation Classifier to assess
the severity of the analyzed events.

3In order to reduce an object detection problem to a binary classification
one, we consider for every frame the maximum stop sign probability detected
by YOLOv3 as a proxy for the probability that at least a stop sign is present
in the frame.

THIS WORK HAS BEEN SUBMITTED TO THE IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 6

Figure 6 shows the idea behind the method we use to extract
the features related to the stop crossing dynamics. The plot on
the upper part of the figure shows the time evolution of the
Stop Sign Detector output (i.e., the probability that at least
a stop sign is present in the content of a video frame as
a function of time, p(t)) when a vehicle is approaching an
intersection controlled by a stop sign. The plots on the lower
part of the figure show the speed and acceleration profiles
respectively. The probability profile starts increasing as soon as

time [s]
0

1

pr
ob

ab
ili

ty p(tc)

time [s]
0

50

sp
ee

d
[
k
m

/
h

]

Ts

v∗

0 2 4 6 8 10 12 14 16
time [s]

−1

0

ac
ce

le
ra

ti
on

[
m

/
s2

]

Ta

a∗

Fig. 6. Time dynamics of a stop sign violation: the upper plot shows
the output of the stop sign detector for each frame, while vehicle speed and
acceleration are shown in the bottom plots. In all the plots we highlight the
time window used to extract features related to stop crossing dynamics.

the stop sign becomes visible in the scene. The red cross in the
upper plot denotes the instant in which the stop sign disappears
from the scene, which we use as estimate for the beginning
of the intersection crossing (crossing point). In practice, we
choose as crossing point (tc in the figure) the last time point
in which the probability profile assumes a value close to one
(i.e., tc = arg max{p(t) ≈ 1}). The features are then extracted
in a time window around the crossing point tc. In particular,
we focus on a time slice of 7 seconds, from 2 seconds ahead
the estimated crossing time to 5 seconds after it (the window
is highlighted in yellow in Figure 6). We found this optimal
time window, accounting for random delays among different
sensors, through a cross-validated grid search performed on
our dataset.

Given the signal slices in the aforementioned time window,
we extract the following quantities:

• Minimum speed value (v∗ in Figure 6).
• Time shift between the crossing instant and the minimum

speed instant (Ts in Figure 6).
• Minimum acceleration value (a∗ in Figure 6)
• Time shift between the crossing instant and the minimum

acceleration instant (Ta in Figure 6).
The other family of features tries to characterize the trajec-

tories of detected stop signs through video frames. The aim
of these features is related to the fact that in some cases stop
signs that are not pertinent to the driver lane could appear in
the video, typically on the left-hand side of the video frame.
In order to characterize stop signs trajectories through video

frames, we exploit the saliency map, as described in section
III-C, to obtain estimates of the positions and the sizes of
the detected stop signs. Saliency maps, computed for every
video frame by the Stop Sign Detector, are stacked into a 3-
dimensional tensor S[t, i, j] that for each timestamp t contains
a gray-scale image, indexed with i and j which span height
and width respectively. In practice, we only focus on the first
instant in which stop signs appear in the scene (i.e., the first
time t0 such that p(t0) ≈ 1) and the last instant before they
disappear (i.e., the estimated crossing point tc). For those time
instants, we add as features the estimated positions and sizes
of the detected stop signs (namely, µµµ(t0), σσσ(t0), µµµ(tc), σσσ(tc)).

TABLE I
DEFINITIONS

Description Name Formula

First Stop Appearance t0 argmin{p(t) ≈ 1}
Stop Crossing tc argmax{p(t) ≈ 1}

Minimum Speed Time tv argmin{v(t) : t ∈ [tc − 2, tc + 5]}
Minimum Acc. Time ta argmin{a(t) : t ∈ [tc − 2, tc + 5]}

Saliency Map S[t, i, j] -

TABLE II
STOP VIOLATION FEATURES

Description Name Formula

Minimum Speed Value v∗ min{v(t) : t ∈ [tc − 2, tc + 5]}
Speed Time Shift Ts tv − tc

Minimum Acc. Value a∗ min{a(t) : t ∈ [tc − 2, tc + 5]}
Acc. Time Shift Ta tc − ta

Appearance Time Stops µµµ(t0), σσσ(t0) blob(S[t0, i, j])
Crossing Time Stops µµµ(tc), σσσ(tc) blob(S[tc, i, j])

All the features presented in this section are summarized in
Table II. We refer to the time-dependent speed profile with v(t)
and the acceleration one with a(t); we express time windows
and other time quantities in seconds. The blob operator used
in the table denotes the blobs detector function, that given a
black and white image returns mean and standard deviation of
detected blobs. Related definitions needed to compute these
quantities are presented in Table I.

E. Stop Violation Classifier

The machine learning model we use as Stop Violation
Classifier, that maps the extracted features, presented in the
previous subsection, to the severity level is a Random Forest
Regressor (RFR) [32]. It is worth noting that even if the
rule to implement the detection of a stop sign violation is,
in principle, well defined (the driver must completely stop at
the intersection), the adoption of a machine learning model is
mainly needed for the following reasons:

• One of the goal is to assess the severity of the detected
stop sign violations: as presented in III-A our dataset
is composed of two classes of violations (i.e., mild and
severe) and we want to let a model learn the best set of
thresholds to discriminate between them.

THIS WORK HAS BEEN SUBMITTED TO THE IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 7

• As we mentioned in Section III, we work with multiple
noisy variables (i.e., GPS speed, vehicle acceleration and
estimated stop sign probabilities and locations): defining
multiple handcrafted rules on correlated noisy values is
hard because one needs to consider the joint distribution
instead of setting independent thresholds on each value.

The choice of a regressor, instead of a classifier, is due to
the fact that stop violation labels present an intrinsic order
embedded in the severity value (i.e., no-violation → 0, mild-
violation → 1, severe-violation → 2). For this reason, and
because the RFR loss is governed by the mean square error
function, our method penalizes more misclassifications 0↔ 2,
w.r.t. misclassifications 1↔ 2 and 0↔ 1. Because the output
of the regressor is continuous in the interval [0, 2], we finally
convert the RFR continuous predictions to one of the three
original classes by means of rounding.

For the seek of completeness, we compare in Section IV-C
the performance of the RFR against other regression models
to show that our choice is empirically optimal.

IV. EXPERIMENTAL RESULTS

The dataset we used to perform our experiments is the one
described in III-A and contains a total of 8,931 examples:
5,900 no-violations, 2,122 mild-violations and 909 severe-
violations. Videos have been down-sampled, from the original
size, to a resolution of 360× 640 pixels and to a sample rate
of 2 fps. Accelerometer and GPS data are sampled at 2 Hz.
Every sample contained in the dataset has a duration of 16
seconds (i.e., each sensor stream is composed of 32 samples).

A. Stop Violation Pipeline Computational Requirements

In order to compare the trade-off between end-to-end sys-
tem accuracy, memory occupation and required computational
time, we considered different architectural choices for the
implementation of the Stop Sign Detector, being the bottleneck
of our system. The time needed for running the Feature
Extractor + Stop Violation Classifier blocks are together an
order of magnitude smaller than the one needed for running
the Stop Sign Detector. In particular, for running both blocks
less than 0.2 seconds are required, with a memory occupation
of only 40 MB. All the benchmarks presented in this section
were run on a computer equipped with a CPU Intel(R) i7-
6820HQ at 2.70 GHz, 32 GB of RAM and a Tesla T4 GPU.

For the implementation of the Stop Sign Detector we
considered neural networks from the ResNet family with dif-
ferent depths (namely, ResNet18 and ResNet50) and YOLOv3
(trained on COCO dataset and with Darknet53 as backbone),
running on different frame sizes (i.e., 360×640 and 180×320).

Table III reports the inference time (on CPU and on GPU)
and the total memory occupation (network weights + allocated
input tensor) needed for processing different batch sizes, with
the neural architectures considered in this work. Although
YOLOv3 is one of the most efficient off-the-shelf object
detector, the adoption of a lightweight image classifier can
easily halve the amount of required memory and can divide
by three the computational time needed for processing one
batch of data on devices where a GPU is not available.

B. Stop Violation Pipeline Performance Quality

To evaluate the performance of our approach, we reduced
our multiclass problem to two distinct binary problems using
two binarization strategies. We first gathered together mild-
violations and severe violations in the positive class, using
as negative class only the no-violation events, to evaluate
the ability of the model to identify all the violations; then,
we grouped together no-violations and mild-violations in the
negative class, keeping only severe violations in the positive
one, to evaluate the model performance specifically on the
detection of the most important (and rare) events. As a metric
we decided to use the area under the precision-recall (PR)
curve (AUCPR, sometimes also known as average-precision
(AP) score in the literature), which is particularly suitable for
imbalanced problems. This score is obtained by integrating the
PR curve that provides precision and recall points for different
values of binary decision threshold: it assumes a value of 1
for a perfect classifier, and it decreases for each false positive
misclassification performed by the model. Since the number
of severe violations is scarce with respect to the cardinality of
the other classes, in all the following experiments we used a
10-fold cross validation procedure to perform a comprehensive
evaluation of the proposed pipeline.

In our first set of experiments, we first explored how the
performance is affected by the depth of the neural network
architecture and the video frame resolution, in order to es-
timate the trade-off between performance and computational
requirements. In particular, we compared all the combinations
of two different variants of the ResNet family (ResNet18 and
ResNet50) with two different frame resolutions (360 × 640
and 180 × 320). Moreover, to assess the performance differ-
ence gained by using our implementation of the Stop Sign
Detector, we compared it with YOLOv3 running on frame
resolutions of 360 × 640 and 180 × 320. AUCPR values are

TABLE III
CNN COMPUTATIONAL REQUIREMENTS

Network Batch Shape Time CPU Time GPU RAM

ResNet18 32×180×320 2.1 s 0.05 s 180 MB
ResNet18 32×360×640 8.3 s 0.12 s 320 MB
ResNet50 32×180×320 4.6 s 0.41 s 320 MB
ResNet50 32×360×640 15.5 s 0.75 s 450 MB

YOLOv3 32×180×320 10.5 s 0.45 s 800 MB
YOLOv3 32×360×640 43.5 s 1.68 s 1300 MB

TABLE IV
PIPELINE CLASSIFICATION PERFORMANCE WITH RFR AND DIFFERENT

STOP SIGN DETECTOR CONFIGURATIONS

Network Resolution Violation (AUCPR) Severe (AUCPR)

ResNet18 180×320 94% 74%
ResNet18 360×640 94% 76%
ResNet50 180×320 95% 79%
ResNet50 360×640 95% 80%

YOLOv3 180×320 90% 67%
YOLOv3 360×640 93% 73%

THIS WORK HAS BEEN SUBMITTED TO THE IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 8

reported in Table IV for all the tested combinations, for both
the identification of violations (mild + severe, see Violation
column) and for the identification of severe violations only
(see Severe column). For both tasks, the custom trained
ResNet models provide a significant improvement over the
off-the-shelf YOLOv3 model, especially at lower resolution
(compare the 67% obtained with YOLO with the 79% that
can be obtained using our Stop Sign Detector with a ResNet50
backbone). We can see that there is not a huge difference in
performance changing the depth of the ResNet architecture
for the identification of generic violations. A larger variation
is noticeable in the severe violation column, where frame
resolution affects the performance more than the network
depth. This can be explained by the fact that there is likely
no need for an extremely deep network architecture for the
identification of a single, well-defined object (like a stop
sign), while a lower resolution can significantly affect the
performance causing false stop sign detections from similar
traffic signs when they are not close enough to the subject
vehicle.

In the second part of our experiments, we fixed our network
to ResNet18 with an input frame resolution of 180 × 320,
mainly because it reached the best trade-off between classifi-
cation accuracy, computational time and memory occupation.
We then show a more detailed ablation study comparing our
pipeline with different alternatives to assess the effectiveness
of each component of our approach (in particular our main
contributions, the Stop Sign Detector and the Feature Extractor
+ Stop Violation Classifier):

• a pipeline where we kept the Feature Extractor + Stop Vi-
olation Classifier but we replaced our Stop Sign Detector
with an off-the-shelf object detector YOLOv3 trained on
COCO dataset;

• a pipeline where we kept our Stop Sign Detector but we
replaced the Feature Extractor + Stop Violation Classifier
with a rule-based model (similar to the one used in [4]),
that uses a threshold on the vehicle speed to identify
violations;

• a pipeline where we replaced both our Stop Sign Detector
with YOLOv3 and the Feature Extractor + Stop Violation
Classifier with a rule-based model, similar to [4].

Figure 7 shows the precision-recall curves for the first
binarization strategy (i.e., severe + mild-violations vs no-
violations). The orange curve is obtained by using the Stop
Sign Detector with a ResNet18 backbone, while the blue
curve uses YOLOv3. As one can see from the plot legend,
the former approach gains 4% of AUCPR compared with the
latter one, reaching 94%. Since both curves are obtained with
the same Feature Extractor + Stop Violation Classifier blocks,
this performance boost, attributed to the reduction of stop sign
false positives, is due to our custom model trained on an ad-
hoc stop sign dataset. The black point and the green cross, in
the upper right of the plot, show the precision-recall points
obtained with the rule-based baseline used in [4], respectively
using ResNet18 and YOLOv3 as Stop Sign Detector. Note that
we could not obtain a PR curve since the rule-based model
does not provide a confidence, but only a classification. From

this plot, we can conclude that both the components used
in our pipeline, i.e., the custom Stop Sign Detector and the
Feature Extractor + Stop Violation Classifier, are crucial in
significantly improving the performance of the system on the
detection of violations.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Violations PR Curve

YOLO + [3]

ResNet18 + [3]

YOLO + RFR (AUCPR = 0.90)

ResNet18 + RFR (AUCPR = 0.94)

Fig. 7. PR curve for Violation (Severe + Mild) vs No Violation: the
blue curve refers to the experiment using YOLOv3 as Stop Sign Detector,
the orange to the one using ResNet18. The green cross and the black point
indicate the performance of the rule-based pipelines. All methods applied at
a resolution of 180× 320.

Figure 8 shows the precision-recall curve for the second
binarization strategy (i.e., severe-violations vs mild-violations
+ no-violations). In this case, the use of ResNet18 as stop sign
detector in place of YOLOv3 gives a performance boost of 7%
in terms of AUCPR. The reason of this fact is that YOLOv3
false positive detections, when the vehicle is likely traveling
at a high speed, are vastly deteriorating the performance of
the whole pipeline in recognizing severe violations.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Severe Violations PR Curve

YOLO + RFR (AUCPR = 0.67)

ResNet18 + RFR (AUCPR = 0.74)

Fig. 8. PR curve for Severe Violations vs Rest (Mild + No Violation):
the blue curve refers to the experiment using YOLOv3 as Stop Sign Detector,
the orange to the one using ResNet18. Both methods applied at a resolution
of 180× 320.

THIS WORK HAS BEEN SUBMITTED TO THE IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

TABLE V
CONFUSION MATRIX OBTAINED WITH THE RESNET-BASED STOP SIGN

DETECTOR @180× 320 AND RANDOM FOREST REGRESSOR

Predicted

No Violation Mild Severe

True
No Violation 5560 329 11
Mild 200 1879 43
Severe 84 333 492

TABLE VI
PIPELINE CLASSIFICATION PERFORMANCE WITH DIFFERENT STOP

VIOLATION CLASSIFIER IMPLEMENTATIONS

Network Resolution Violation (AUCPR) Severe (AUCPR)

Random Forest Regressor

ResNet18 180×320 94% 74%
ResNet18 360×640 94% 76%
ResNet50 180×320 95% 79%
ResNet50 360×640 95% 80%

Linear Regression

ResNet18 180×320 84% 40%
ResNet18 360×640 84% 41%
ResNet50 180×320 85% 46%
ResNet50 360×640 85% 49%

K-Nearest Neighbors

ResNet18 180×320 88% 66%
ResNet18 360×640 90% 68%
ResNet50 180×320 89% 66%
ResNet50 360×640 90% 65%

Multi-layer Perceptron

ResNet18 180×320 92% 75%
ResNet18 360×640 94% 76%
ResNet50 180×320 93% 77%
ResNet50 360×640 94% 80%

Finally, to further give an insight about the performance
brought by our approach on the 3-class problem, Table V
shows the full confusion matrix obtained by our proposed
pipeline using ResNet18 as Stop Sign Detector.

From the point of view of computational cost, the running
time of the proposed approach (using ResNet18 as Stop Sign
Detector) takes around 2.4 seconds to process a 16 seconds
video on an Intel(R) i7-6820HQ and 8.1 seconds on a Rasberry
Pi 4, while the same pipeline employing YOLOv3 for stop
sign detection requires more than 10 seconds per video on
the Intel CPU. On the Raspberry CPU, running YOLOv3
with its default Darknet53 backbone was not possible. These
results clearly show the advantage of using a dedicated CNN
architecture compared to general purpose object detectors
leading to an accurate and lightweight solution that could run
in real time on edge devices.

C. Stop Violation Classifier Comparison

In this subsection, we compare different results we obtain by
switching the implementation of the Stop Violation Classifier
from the Random Forest Regressor to other regressors. The
scope of this paragraph is to show that our choice, motivated

by the fact that a Random Forest implements optimal adaptive
threshold-based cuts on input features data, is also empirically
optimal under a performance point of view. In particular, we
focus on the following regression models with optimal hyper-
parameters tuned through a cross-validated grid search:

• Linear Regression with `2 regularization (regularization
strength α = 0.5)

• K-Nearest Neighbors Regressor (K = 8)
• Multi-layer Perceptron Regressor (with 2 hidden layers

of size 30 and 20 neurons respectively, with Rectified
Linear Unit as activation functions).

In Table VI we report the results in terms of AUCPR for
different combinations of Stop Sign Classifier, input frame
resolution and Stop Violation Classifier model. For all the
models, except for the Random Forest Regressor, we pre-
process the features by subtracting their mean and dividing
by their standard deviation (whitening normalization). The
experimental results show that the RFR is able to exploit
the extracted features at their full potential. The multi-layer
perceptron is also only slightly inferior.

V. CONCLUSIONS

This paper introduced a method to automatically detect
stop sign violations, leveraging joint information coming from
video, GPS and IMU sensors. We proposed a two-stage
machine learning model that firstly detects the presence of an
intersection controlled by a stop sign, within a video stream,
through the use of an ad-hoc CNN, and then infers if a
violation occurs, also assessing its severity. The experimental
results showed the effectiveness of our approach, in terms of
both computational time and model accuracy. Moreover, we
showed that the ad-hoc CNN for stop detection can run with
low computational demanding settings in such a way that the
entire pipeline can run in real time even on edge devices.

Our future direction of research is to generalize the proposed
system in order to detect other violations in real-time, as well
as other potentially interesting or dangerous situations occur-
ring in road scenes. Another possible avenue of research would
be towards the anticipation of violations, to be integrated in
Advanced Driving Assistance Systems. Moreover, if a larger
dataset were available, possible improvements could involve
employing end-to-end time-aware neural networks, working
directly on raw video and GPS/IMU data streams.

REFERENCES

[1] R. A. Retting, H. B. Weinstein, and M. G. Solomon, “Analysis of
motor-vehicle crashes at stop signs in four US cities,” Journal of Safety
Research, vol. 34, no. 5, pp. 485–489, 2003.

[2] L. Taccari, F. Sambo, L. Bravi, S. Salti, L. Sarti, M. Simoncini, and
A. Lori, “Classification of crash and near-crash events from dashcam
videos and telematics,” in 2018 21st International Conference on Intel-
ligent Transportation Systems (ITSC), Nov 2018, pp. 2460–2465.

[3] K. Merry and P. Bettinger, “Smartphone gps accuracy study in an urban
environment,” PloS one, vol. 14, no. 7, p. e0219890, 2019.

[4] N. Aliane, J. Fernandez, M. Mata, and S. Bemposta, “A system for
traffic violation detection,” Sensors, vol. 14, no. 11, 2014.

[5] S. Srinivas, R. K. Sarvadevabhatla, K. R. Mopuri, N. Prabhu, S. S.
Kruthiventi, and R. V. Babu, “A taxonomy of deep convolutional neural
nets for computer vision,” Frontiers in Robotics and AI, vol. 2, 2016.

THIS WORK HAS BEEN SUBMITTED TO THE IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 10

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[8] D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber, “Multi-column deep
neural network for traffic sign classification,” Neural networks, vol. 32,
pp. 333–338, 2012.

[9] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural networks, vol. 32, pp. 323–332, 2012.

[10] S. Houben, J. Stallkamp, J. Salmen, M. Schlipsing, and C. Igel,
“Detection of traffic signs in real-world images: The German Traffic
Sign Detection Benchmark,” in International Joint Conference on Neural
Networks, no. 1288, 2013.

[11] A. Arcos-Garcia, J. A. Alvarez-Garcia, and L. M. Soria-Morillo, “Eval-
uation of deep neural networks for traffic sign detection systems,”
Neurocomputing, vol. 316, pp. 332–344, 2018.

[12] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common Cbjects in
Context,” in European conference on computer vision. Springer, 2014.

[13] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[14] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object detection via region-
based fully convolutional networks,” in Advances in neural information
processing systems, 2016, pp. 379–387.

[15] Y. Zhu, C. Zhang, D. Zhou, X. Wang, X. Bai, and W. Liu, “Traffic
sign detection and recognition using fully convolutional network guided
proposals,” Neurocomputing, vol. 214, pp. 758–766, 2016.

[16] F. Larsson and M. Felsberg, “Using Fourier descriptors and spatial
models for traffic sign recognition,” in Scandinavian conference on
image analysis. Springer, 2011, pp. 238–249.

[17] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[18] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[19] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu, “Traffic-sign
detection and classification in the wild,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016.

[20] Y. Yuan, Z. Xiong, and Q. Wang, “Vssa-net: vertical spatial sequence
attention network for traffic sign detection,” IEEE transactions on image
processing, vol. 28, no. 7, pp. 3423–3434, 2019.

[21] ——, “An incremental framework for video-based traffic sign detection,
tracking, and recognition,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 18, no. 7, pp. 1918–1929, 2016.

[22] P. Kaur and R. Sobti, “Sensor fusion algorithm for software based ad-
vanced driver-assistance intelligent systems,” in 2018 First International
Conference on Secure Cyber Computing and Communication (ICSCCC).
IEEE, 2018, pp. 457–460.

[23] J. Gao and H. Tembine, “Distributed mean-field-type filters for traffic
networks,” IEEE Transactions on Intelligent Transportation Systems,
vol. 20, no. 2, pp. 507–521, 2018.

[24] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[25] J. Guo, H. He, T. He, L. Lausen et al., “GluonCV and GluonNLP:
Deep Learning in Computer Vision and Natural Language Processing,”
Journal of Machine Learning Research, vol. 21, no. 23, pp. 1–7, 2020.

[26] Z. Zhang, T. He, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of
freebies for training object detection neural networks,” arXiv preprint
arXiv:1902.04103, 2019.

[27] G. E. Dahl, T. N. Sainath, and G. E. Hinton, “Improving deep neural
networks for LVCSR using rectified linear units and dropout,” in
2013 IEEE international conference on acoustics, speech and signal
processing. IEEE, 2013, pp. 8609–8613.

[28] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
arXiv preprint arXiv:1312.6034, 2013.

[29] H. Kong, H. C. Akakin, and S. E. Sarma, “A generalized laplacian of
gaussian filter for blob detection and its applications,” IEEE transactions
on cybernetics, vol. 43, no. 6, pp. 1719–1733, 2013.

[30] S. Hinz, “Fast and subpixel precise blob detection and attribution,”
in IEEE International Conference on Image Processing 2005, vol. 3.
IEEE, 2005, pp. III–457.

[31] L. Perez and J. Wang, “The effectiveness of data augmentation in image
classification using deep learning,” arXiv preprint arXiv:1712.04621,
2017.

[32] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, 2001.

Luca Bravi received the M.Sc. degree in computer
engineering and the Ph.D. degree in optimization
from the University of Florence, in 2012 and 2016,
respectively. Since 2015 and currently he is a data
scientist in Verizon Connect. His current research
interests include areas of machine learning applied
to telematics and nonlinear optimization.

Luca Kubin received the MSc degree in communi-
cation engineering from the University of Parma in
2015. He is currently a Ph.D. candidate at Verizon
Connect Research in collaboration with the Uni-
versity of Florence. His research interests include
deep learning, computer vision, and digital signal
processing.

Stefano Caprasecca is a Data Scientist at Verizon
Connect since 2018. He holds a MSc in Theoretical
and Computational Chemistry and a PhD in Physics,
and is the author of more than 30 articles in peer-
reviewed journals. His current research is focussed
on the predictive maintenance of vehicle telematics
devices.

Douglas Coimbra de Andrade graduated mechan-
ical aeronautical engineer in 2005 and received his
D. Sc. in the field of Aerospace Systems and Mecha-
tronics in 2017, both from Instituto Tecnologico de
Aeronautica, Brazil. His research interests include
AI applied to computer vision, video analytics and
HPC.

Matteo Simoncini received the MSc degree in com-
puter engineering from the University of Florence,
Italy, in 2016. He is currently working toward an
industrial Ph.D. degree at Verizon Connect Research,
Florence, Italy and the University of Florence, Italy.
His research interests include intelligent transporta-
tion systems, machine learning, computer vision and
their applications.

Leonardo Taccaril received the Ph.D. in Operations
Research from Politecnico di Milano in 2015. He
is currently lead scientist at Verizon Connect. He
is author or coauthor of more than 20 scientific
articles and 10 patents. His research interests include
machine learning and mathematical optimization ap-
plied to transportation, logistics, and energy.

Francesco Sambo holds a PhD in bioinformatics
and artificial intelligence from the university of
Padova. He is currently Chief Data Scientist at
Verizon Connect. His research interests include road
scene understanding and predictive maintenance. He
is author or coauthor of more than 40 scientific
papers and 10 patents.

